September 2009 On generic structures with a strong amalgamation property
Koichiro Ikeda, Hirotaka Kikyo, Akito Tsuboi
J. Symbolic Logic 74(3): 721-733 (September 2009). DOI: 10.2178/jsl/1245158082

Abstract

Let ℒ be a finite relational language and α = (αR: R ∈ ℒ) a tuple with 0 < αR ≤ 1 for each R ∈ ℒ. Consider a dimension function

δα(A) = |A| - ΣR ∈ ℒα_R e_R(A)

where each eR(A) is the number of realizations of R in A. Let Kα be the class of finite structures A such that δα(X) ≥ 0 for any substructure X of A. We show that the theory of the generic model of Kα is AE-axiomatizable for any α.

Citation

Download Citation

Koichiro Ikeda. Hirotaka Kikyo. Akito Tsuboi. "On generic structures with a strong amalgamation property." J. Symbolic Logic 74 (3) 721 - 733, September 2009. https://doi.org/10.2178/jsl/1245158082

Information

Published: September 2009
First available in Project Euclid: 16 June 2009

zbMATH: 1178.03042
MathSciNet: MR2548475
Digital Object Identifier: 10.2178/jsl/1245158082

Rights: Copyright © 2009 Association for Symbolic Logic

JOURNAL ARTICLE
13 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.74 • No. 3 • September 2009
Back to Top