Abstract
We consider two axioms of second-order arithmetic. These axioms assert, in two different ways, that infinite but narrow binary trees always have infinite paths. We show that both axioms are strictly weaker than Weak König's Lemma, and incomparable in strength to the dual statement (WWKL) that wide binary trees have paths.
Citation
Stephen Binns. Bjørn Kjos-Hanssen. "Finding paths through narrow and wide trees." J. Symbolic Logic 74 (1) 349 - 360, March 2009. https://doi.org/10.2178/jsl/1231082316
Information