Abstract
This paper calculates, in a precise way, the complexity of the index sets for three classes of computable structures: the class $K_{\omega^{CK}_1}$ of structures of Scott rank $\omega^{CK}_1$, the class $K_{\omega^{CK}_1+1}$ of structures of Scott rank $\omega^{CK}_1+1}$, and the class $K$ of all structures of non-computable Scott rank. We show that $I(K)$ is $m$-complete $\Sigma^1_1$, $I(K_{\omega^{CK}_1})$ is $m$-complete $\Pi^0_2$ relative to Kleene’s $\mathcal{O}$, and $I(K_{\omega^{CK}_1+1})$ is $m$-complete $\Sigma^0_2 relative to $\mathcal{O}$.
Citation
W. Calvert. E. Fokina. S. S. Goncharov. J. F. Knight. O. Kudinov. A. S. Morozov. V. Puzarenko. "Index sets for classes of high rank structures." J. Symbolic Logic 72 (4) 1418 - 1432, December 2007. https://doi.org/10.2178/jsl/1203350796
Information