Journal of Symbolic Logic

Axiomatizing Kripke’s Theory of Truth

Volker Halbach and Leon Horsten

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We investigate axiomatizations of Kripke’s theory of truth based on the Strong Kleene evaluation scheme for treating sentences lacking a truth value. Feferman’s axiomatization KF formulated in classical logic is an indirect approach, because it is not sound with respect to Kripke’s semantics in the straightforward sense; only the sentences that can be proved to be true in KF are valid in Kripke’s partial models. Reinhardt proposed to focus just on the sentences that can be proved to be true in KF and conjectured that the detour through classical logic in KF is dispensable. We refute Reinhardt’s Conjecture, and provide a direct axiomatization PKF of Kripke’s theory in partial logic. We argue that any natural axiomatization of Kripke’s theory in Strong Kleene logic has the same proof-theoretic strength as PKF, namely the strength of the system RAω ramified analysis or a system of Tarskian ramified truth up to ωω. Thus any such axiomatization is much weaker than Feferman’s axiomatization KF in classical logic, which is equivalent to the system RA<ε₀ of ramified analysis up to ε₀.

Article information

J. Symbolic Logic Volume 71, Issue 2 (2006), 677-712.

First available: 2 May 2006

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Halbach, Volker; Horsten, Leon. Axiomatizing Kripke’s Theory of Truth. Journal of Symbolic Logic 71 (2006), no. 2, 677--712. doi:10.2178/jsl/1146620166.

Export citation


  • Hiroshi Aoyama, The strong completeness of a system based on Kleene's strong three-valued logic, Notre Dame Journal of Formal Logic, vol. 35 (1994), pp. 355--368.
  • JC Beall and Brad Armour-Garb, Deflationism and paradox, Clarendon Press, Oxford,2005.
  • Nuel Belnap and Anil Gupta, The revision theory of truth, MIT Press, Cambridge,1993.
  • Stephen Blamey, Partial logic, Handbook of philosophical logic (Dov M. Gabbay and Franz Guenthner, editors), vol. 5, Kluwer, Dordrecht, second ed.,2002, pp. 261--353.
  • Andrea Cantini, Notes on formal theories of truth, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 35 (1989), pp. 97--130.
  • --------, A theory of formal truth arithmetically equivalent to ID$_1$, Journal of Symbolic Logic, vol. 55 (1990), pp. 244--259.
  • --------, Logical frameworks for truth and abstraction. An axiomatic study, Studies in Logic and the Foundations of Mathematics, vol. 135, Elsevier, Amsterdam,1996.
  • John Cleave, The notion of logical consequence in the logic of inexact predicates, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 20 (1974), pp. 307--324.
  • William Craig, Replacement of auxiliary expressions, Philosophical Review, vol. 65 (1956), pp. 38--55.
  • Solomon Feferman, Transfinite recursive progressions of axiomatic theories, Journal of Symbolic Logic, vol. 27 (1962), pp. 259--316.
  • --------, Systems of predicative analysis, Journal of Symbolic Logic, vol. 29 (1964), pp. 1--30.
  • --------, Reflecting on incompleteness, Journal of Symbolic Logic, vol. 56 (1991), pp. 1--49.
  • Harvey Friedman and Michael Sheard, An axiomatic approach to self-referential truth, Annals of Pure and Applied Logic, vol. 33 (1987), pp. 1--21.
  • --------, The disjunction and existence properties for axiomatic systems of truth, Annals of Pure and Applied Logic, vol. 40 (1988), pp. 1--10.
  • Michael Glanzberg, Minimalism, deflationism, and paradoxes, in [107--132]?,2005.
  • Volker Halbach, A system of complete and consistent truth, Notre Dame Journal of Formal Logic, vol. 35 (1994), pp. 311--327.
  • --------, Axiomatische Wahrheitstheorien, Akademie Verlag, Berlin,1996.
  • --------, Truth and reduction, Erkenntnis, vol. 53 (2000), pp. 97--126.
  • --------, Axiomatic theories of truth, Stanford Encyclopedia of Philosophy (Edward N. Zalta, editor),Spring 2006, forthcoming,
  • Volker Halbach and Leon Horsten, The deflationist's axioms for truth, in [203--217]?,2005.
  • Carl Hempel, The theoretician's dilemma, Minnesota studies in the philosophy of science, II (Herbert Feigl et al., editor), University of Minnesota press,1958, pp. 37--98.
  • John Kearns, The strong completeness of a system for Kleene's three-valued logic, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 25 (1979), pp. 61--68.
  • Michael Kremer, Kripke and the logic of truth, Journal of Philosophical Logic, vol. 17 (1988), pp. 225--278.
  • Saul Kripke, Outline of a theory of truth, Journal of Philosophy, vol. 72 (1975), pp. 690--712, reprinted in [Mar84?].
  • Robert L\@. Martin (editor), Recent essays on truth and the Liar paradox, Clarendon Press and Oxford University Press, Oxford and New York,1984.
  • Robert L. Martin and Peter W. Woodruff, On representing `true-in-L' in L, Philosophia, vol. 5 (1975), pp. 213--217, Reprinted in [Mar84?].
  • Tim Maudlin, Truth and paradox. Solving the riddles, Clarendon Press, Oxford,2004.
  • Vann McGee, Truth, vagueness, and paradox: An essay on the logic of truth, Hackett Publishing, Indianapolis and Cambridge,1991.
  • --------, In praise of the free lunch: Why disquotationalists should embrace compositional semantics, manuscript,2003.
  • Richard Montague, Syntactical treatments of modality, with corollaries on reflexion principles and finite axiomatizability, Acta Philosophica Fennica, vol. 16 (1963), pp. 153--67, Reprinted in [286--302]?.
  • --------, Formal philosophy: Selected papers of Richard Montague, Yale University Press, New Haven and London,1974, Edited and with an introduction by Richmond H. Thomason.
  • Yiannis N\@. Moschovakis, Elementary induction on abstract structures, Studies in Logic and the Foundations of Mathematics, no. 77, North-Holland and Elsevier, Amsterdam, London and New York,1974.
  • Charles Parsons, On $n$-quantifier induction, Journal of Symbolic Logic, vol. 37 (1972), pp. 466--482.
  • Wolfram Pohlers, Proof theory. An introduction, Springer, Berlin,1989.
  • William Reinhardt, Remarks on significance and meaningful applicability, Mathematical logic and formal systems. A collection of papers in honor of Professor Newton C.A. Da Costa (Luiz Paulo de Alcantara, editor), Lecture Notes in Pure and Applied Mathematics, vol. 94, Marcel Dekker inc.,1985, pp. 227--242.
  • --------, Some remarks on extending and interpreting theories with a partial predicate for truth, Journal of Philosophical Logic, vol. 15 (1986), pp. 219--251.
  • Helmut Schwichtenberg, Proof theory: Some applications of cut-elimination, Handbook of mathematical logic (Jon Barwise, editor), Studies in Logic and the Foundations of Mathematics, no. 90, North-Holland, Amsterdam, London, New York and Tokyo,1977, pp. 867--895.
  • Dana Scott, Combinators and classes, $\lambda$-calculus and computer science (Corrado Böhm, editor), Lecture Notes in Computer Science, Springer, Berlin,1975, pp. 1--26.
  • Michael Sheard, Truth, probability, and naive criteria, Principles of truth (Volker Halbach and Leon Horsten, editors), Dr. Hänsel-Hohenhausen, Frankfurt a.M.,2002, pp. 169--181.
  • Scott Soames, Understanding truth, Oxford University Press, New York and Oxford,1999.
  • Gaisi Takeuti, Proof theory, second ed., North Holland, Amsterdam,1987.
  • Anne S. Troelstra and Helmut Schwichtenberg, Basic proof theory, Cambridge Tracts in Theoretical Computer Science, no. 43, Cambridge University Press, Cambridge,1997.
  • Albert Visser, Semantics and the liar paradox, Handbook of philosophical logic (Dov Gabbay and Franz Günthner, editors), vol. 4, Reidel, Dordrecht,1989, pp. 617--706.
  • Hao Wang, The calculus of partial predicates and its extension to set theory, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 7 (1961), pp. 283--288.
  • Peter W. Woodruff, On supervaluations in free logic, Journal of Symbolic Logic, vol. 49 (1984), pp. 943--950.