June 2003 Decomposition and infima in the computably enumerable degrees
Rodney G. Downey, Geoffrey L. LaForte, Richard A. Shore
J. Symbolic Logic 68(2): 551-579 (June 2003). DOI: 10.2178/jsl/1052669063

Abstract

Given two incomparable c.e. Turing degrees a and b, we show that there exists a c.e. degree c such that c =(a \cup c) \cap (b\cupc), a \cup c | b \cup c, and c a \cup b.

Citation

Download Citation

Rodney G. Downey. Geoffrey L. LaForte. Richard A. Shore. "Decomposition and infima in the computably enumerable degrees." J. Symbolic Logic 68 (2) 551 - 579, June 2003. https://doi.org/10.2178/jsl/1052669063

Information

Published: June 2003
First available in Project Euclid: 11 May 2003

zbMATH: 1059.03035
MathSciNet: MR1976590
Digital Object Identifier: 10.2178/jsl/1052669063

Rights: Copyright © 2003 Association for Symbolic Logic

JOURNAL ARTICLE
29 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.68 • No. 2 • June 2003
Back to Top