Abstract
For $0$ < $\alpha,$ $\lambda \leq 1$, the Lerch zeta-function is defined by $L(s;\alpha, \lambda) := \sum_{n=0}^\infty e^{2\pi i\lambda n} (n+\alpha)^{-s}$, where $\sigma$ > $1$. In this paper, we prove joint universality for Lerch zeta-functions with distinct $\lambda_1,\ldots,\lambda_m$ and transcendental $\alpha$.
Citation
Yoonbok LEE. Takashi NAKAMURA. Łukasz PAŃKOWSKI. "Joint universality for Lerch zeta-functions." J. Math. Soc. Japan 69 (1) 153 - 161, January, 2017. https://doi.org/10.2969/jmsj/06910153
Information