Abstract
The enhancement to the Milnor number is an invariant of the homotopy classes of fibered links in the sphere $S^{2n-1}$ and belongs to $\mathbb{Z}/r\mathbb{Z}$, where $r=0$ if $n=2$ and $r=2$ if $n=2$. Mixed polynomials are polynomials in complex variables $z_1,\dots,z_n$ and their conjugates $\bar{z}_1,\dots,\bar{z}_n$. M. Oka showed that mixed polynomials have Milnor fibrations under the strongly non-degeneracy condition. In this present paper, we study fibered links which are defined by a certain class of mixed polynomials which admit Milnor fibrations and show that any element of $\mathbb{Z}/r\mathbb{Z}$ is realized by the enhancement to the Milnor number of such a fibered link.
Citation
Kazumasa INABA. "On the enhancement to the Milnor number of a class of mixed polynomials." J. Math. Soc. Japan 66 (1) 25 - 36, January, 2014. https://doi.org/10.2969/jmsj/06610025
Information