Journal of the Mathematical Society of Japan

A necessary condition for Chow semistability of polarized toric manifolds

Hajime ONO

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $\Delta \subset R^n$ be an $n$-dimensional Delzant polytope. It is well-known that there exist the $n$-dimensional compact toric manifold $X_\Delta$ and the very ample $(C^\times)^n$-equivariant line bundle $L_\Delta$ on $X_\Delta$ associated with $\Delta$. In the present paper, we show that if $(X_\Delta,L_\Delta^i)$ is Chow semistable then the sum of integer points in $i\Delta$ is the constant multiple of the barycenter of $\Delta$. Using this result we get a necessary condition for the polarized toric manifold $(X_\Delta,L_\Delta)$ being asymptotically Chow semistable. Moreover we can generalize the result in [4] to the case when $X_\Delta$ is not necessarily Fano.

Article information

Source
J. Math. Soc. Japan Volume 63, Number 4 (2011), 1377-1389.

Dates
First available in Project Euclid: 27 October 2011

Permanent link to this document
http://projecteuclid.org/euclid.jmsj/1319721144

Digital Object Identifier
doi:10.2969/jmsj/06341377

Zentralblatt MATH identifier
1230.14069

Mathematical Reviews number (MathSciNet)
MR2855816

Subjects
Primary: 14L24: Geometric invariant theory [See also 13A50]
Secondary: 14M25: Toric varieties, Newton polyhedra [See also 52B20] 52B20: Lattice polytopes (including relations with commutative algebra and algebraic geometry) [See also 06A11, 13F20, 13Hxx]

Keywords
Chow semistability polarized toric manifold

Citation

ONO, Hajime. A necessary condition for Chow semistability of polarized toric manifolds. Journal of the Mathematical Society of Japan 63 (2011), no. 4, 1377--1389. doi:10.2969/jmsj/06341377. http://projecteuclid.org/euclid.jmsj/1319721144.


Export citation

References

  • S. K. Donaldson, Scalar curvature and projective embeddings, I, J. Differential Geom., 59 (2001), 479–522.
  • W. Fulton, Introduction to Toric Varieties, Number 131, In: Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1993.
  • A. Futaki, Asymptotic Chow semi-stability and integral invariants, Internat. J. Math., 15 (2004), 967–979.
  • A. Futaki, H. Ono and Y. Sano, Hilbert series and obstructions to asymptotic semistability, Adv. Math., 226 (2011), 254–284.
  • I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1994.
  • M. M. Kapranov, B. Sturmfels and A. V. Zelevinsky, Chow polytopes and general resultants, Duke Math. J., 67 (1992), 189–218.
  • T. Mabuchi, An obstruction to asymptotic semistability and approximate critical metrics, Osaka J. Math., 41 (2004), 463–472.
  • T. Mabuchi, An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, I, Invent. Math., 159 (2005), 225–243.
  • D. Mumford, Stability of projective varieties, Enseign. Math. (2), 23 (1977), 39–110.
  • D. Mumford, J. Fogarty and F. Kirwan, Geometric Invariant Theory, Third edition, Ergeb. Math. Grenzgeb. (2), 34, Springer-Verlag, Berlin, 1994.
  • B. Nill, Gorenstein toric Fano varieties, Dissertation, Universität Tübingen, 2005.
  • B. Nill and A. Paffenholz, Examples of non-symmetric Kähler-Einstein toric Fano manifolds, arXiv:0905.2054.
  • T. Oda, Convex bodies and algebraic geometry, Ergeb. Math. Grenzgeb. (3), 15, Springer-Verlag, Berlin, 1988.
  • H. Ono, Y. Sano and N. Yotsutani, An example of asymptotically Chow unstable manifolds with constant scalar curvature, to appear in Ann. Inst. Fourier, arXiv:0906.3836
  • E. Viehweg, Quasi-Projective Moduli for Polarized Manifolds, Ergeb. Math. Grenzgeb. (3), 30, Springer-Verlag, Berlin, 1995.
  • X.-J. Wang and X. Zhu, Kähler-Ricci solitons on toric manifolds with positive first Chern class, Adv. Math., 188 (2004), 87–103.