Journal of the Mathematical Society of Japan

Complete classification of binary normal regular Hermitian lattices

Byeong Moon KIM, Ji Young KIM, and Poo-Sung PARK

Full-text: Open access


A positive definite Hermitian lattice is called regular if it represents all integers which can be represented locally by the lattice. We investigate binary regular Hermitian lattices over imaginary quadratic fields Q and provide a complete list of the normal binary regular Hermitian lattices.

Article information

J. Math. Soc. Japan Volume 63, Number 3 (2011), 1001-1025.

First available in Project Euclid: 1 August 2011

Permanent link to this document

Digital Object Identifier

Zentralblatt MATH identifier

Mathematical Reviews number (MathSciNet)

Primary: 11E39: Bilinear and Hermitian forms
Secondary: 11E20: General ternary and quaternary quadratic forms; forms of more than two variables 11E41: Class numbers of quadratic and Hermitian forms

Hermitian lattice regular lattice


KIM, Byeong Moon; KIM, Ji Young; PARK, Poo-Sung. Complete classification of binary normal regular Hermitian lattices. Journal of the Mathematical Society of Japan 63 (2011), no. 3, 1001--1025. doi:10.2969/jmsj/06331001.

Export citation


  • H. Brandt and O. Intrau, Tabellen reduzierter positiver ternärer quadratischer Formen, Abh. Sachs. Akad. Wiss. Math.-Nat. Kl., 45, 1958.
  • W. K. Chan, A. G. Earnest, M. I. Icaza and J. Y. Kim, Finiteness results for regular definite ternary quadratic forms over $\mathbf{Q}(\sqrt{5})$, Inter. J. Number Theory, 3 (2007), 541–556.
  • W. K. Chan and A. Rokicki, Positive definite binary hermitian forms with finitely many exceptions, J. Number Theory, 124 (2007), 167–180.
  • L. E. Dickson, Ternary quadratic forms and congruences, Ann. of Math., 28 (1927), 331–341.
  • A. G. Earnest, An application of character sum inequalities to quadratic forms, Number Theory, (Halifax, NS, 1994), CMS Conf. Proc., 15, Amer. Math. Soc. Providence, RI, 1995, pp.,155–158.
  • A. G. Earnest and A. Khosravani, Universal binary Hermitian forms, Math. Comp., 66 (1997), 1161–1168.
  • A. G. Earnest and A. Khosravani, Representation of integers by positive definite binary Hermitian lattices over imaginary quadratic fields, J. Number Theory, 62 (1997), 368–374.
  • M. I. Icaza, Sums of squares of integral linear forms, Acta Arith., 74 (1996), 231–240.
  • H. Iwabuchi, Universal binary positive definite Hermitian lattices, Rocky Mountain J. Math., 30 (2000), 951–959.
  • N. Jacobson, A note on hermitian forms, Amer. Math. Soc., 46 (1940), 264–268.
  • W. C. Jagy, I. Kaplansky and A. Schiemann, There are 913 Regular Ternary Forms, Mathematika, 44 (1997), 332–341.
  • B. M. Kim, Complete determination of regular positive diagonal quaternary integral quadratic forms, preprint.
  • B. M. Kim, J. Y. Kim and P.-S. Park, The fifteen theorem for universal Hermitian lattices over imaginary quadratic fields, Math. Comp., 79 (2010), 1123–1144.
  • B. M. Kim, J. Y. Kim and P.-S. Park, Even universal binary Hermitian lattices over imaginary quadratic fields, Forum Math., to appear in print, ISSN (Online) 1435–5337, ISSN (Print) 0933-7741, DOI: 10.1515/FORM.2011.043.
  • J.-H. Kim and P.-S. Park, A few uncaught universal Hermitian forms, Proc. Amer. Math. Soc., 135 (2007), 47–49.
  • B.-K. Oh, Regular positive ternary quadratic forms, preprint.
  • O. T. O'Meara, Introduction to Quadratic Forms, Spinger-Verlag, New York, 1973.
  • G. Otremba, Zur Theorie der hermiteschen Formen in imaginär-quadratischen Zahlkörpern, J. Reine Angew. Math., 249 (1971), 1–19.
  • A. Rokicki, Finiteness results for definite $n$-regular and almost $n$-regular hermitian forms, Ph.D. Thesis, Wesleyan University, (2005).
  • G. L. Watson, Some problems in the theory of numbers, Ph.D. Thesis, University of London, (1953).
  • G. L. Watson, The representation of integers by positive ternary quadratic forms, Mathematika, 1 (1954), 104–110.
  • G. L. Watson, Transformations of a quadratic form which do not increase the class-number, Proc. London Math. Soc. (3), 12 (1962), 577–587.