Journal of the Mathematical Society of Japan

Hardy's inequalities for Hermite and Laguerre expansions revisited

Yuichi KANJIN

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We show that Hardy's inequalities for Laguerre expansions hold on the space $L^1(0,\infty)$ when the Laguerre parameters $\alpha$ are positive, and we prove that although the inequality holds on the real Hardy space $H^1(0,\infty)$ if $\alpha= 0$, it does not hold on $L^1(0,\infty)$. Further, Hardy's inequality for Hermite expansion is established on $L^1(0,\infty)$.

Article information

Source
J. Math. Soc. Japan Volume 63, Number 3 (2011), 753-767.

Dates
First available in Project Euclid: 1 August 2011

Permanent link to this document
http://projecteuclid.org/euclid.jmsj/1312203797

Digital Object Identifier
doi:10.2969/jmsj/06330753

Zentralblatt MATH identifier
05950718

Mathematical Reviews number (MathSciNet)
MR2836741

Subjects
Primary: 42C10: Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
Secondary: 42B30: $H^p$-spaces 33C45: Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) [See also 42C05 for general orthogonal polynomials and functions]

Keywords
Hardy's inequality Hermite expansion Laguerre expansion

Citation

KANJIN, Yuichi. Hardy's inequalities for Hermite and Laguerre expansions revisited. Journal of the Mathematical Society of Japan 63 (2011), no. 3, 753--767. doi:10.2969/jmsj/06330753. http://projecteuclid.org/euclid.jmsj/1312203797.


Export citation

References

  • R. Askey and S. Wainger, Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math., 87 (1965), 695–708.
  • J. J. Betancor and L. Rodríguez-Mesa, On Hankel transformation, convolution operators and multipliers on Hardy type spaces, J. Math. Soc. Japan, 53 (2001), 687–709.
  • R. Balasubramanian and R. Radha, Hardy-type inequalities for Hermite expansions, J. Inequal. Pure Appl. Math., 6 (2005), No.,1, Article 12, 4pp. (electronic).
  • L. Colzani and G. Travaglini, Hardy-Lorentz spaces and expansions in eigenfunctions of the Laplace-Beltrami operator on compact manifolds, Colloq. Math., 58 (1990), 305–315.
  • J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
  • J. J. Guadalupe and V. I. Kolyada, A transplantation theorem for ultraspherical polynomials at critical index, Studia Math., 147 (2001), 51–72.
  • Y. Kanjin, Hardy's inequalities for Hermite and Laguerre expansions, Bull. London Math. Soc., 29 (1997), 331–337.
  • Y. Kanjin and E. Sato, The Hardy-Littlewood theorem on fractional integration for Laguerre series, Proc. Amer. Math. Soc., 123 (1995), 2165–2171.
  • Y. Kanjin and K. Sato, Hardy's inequality for Jacobi expansions, Math. Inequal. Appl., 7 (2004), 551–555.
  • B. Muckenhoupt, Mean convergence of Hermite and Laguerre series. II, Trans. Amer. Math. Soc., 147 (1970), 433–460.
  • R. Radha and S. Thangavelu, Hardy's inequalities for Hermite and Laguerre expansions, Proc. Amer. Math. Soc., 132 (2004), 3525–3536.
  • K. Sato, Paley's inequality and Hardy's inequality for the Fourier-Bessel expansions, J. Nonlinear Covex Anal., 6 (2005), 441–451.
  • G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloquium Publ. XXIII (4th edn, Amer. Math. Soc., Providence, RI, 1975).
  • S. Thangavelu, On regularity of twisted spherical means and special Hermite expansions, Proc. Indian Acad. Sci. Math. Sci., 103 (1993), 303–320.
  • S. Thangavelu, Lectures on Hermite and Laguerre expansions, Math. Notes No.,42, Princeton Univ. Press, Princeton, New Jersey 1993.