Journal of the Mathematical Society of Japan

Compact quotients with positive algebraic dimensions of large domains in a complex projective 3-space

Masahide KATO

Full-text: Open access

Abstract

A domain in a complex 3-dimensional projective space is said to be large, if the domain contains a line, i.e., a projective linear subspace of dimension one. We study compact complex 3-manifolds defined as non-singular quotients of large domains. Any holomorphic automorphism of a large domain becomes an element of the projective linear transformations. In the first half, we study the limit sets of properly discontinuous groups acting on large domains. In the second half, we determine all compact complex 3-manifolds with positive algebraic dimensions which are quotients of large domains.

Article information

Source
J. Math. Soc. Japan Volume 62, Number 4 (2010), 1317-1371.

Dates
First available in Project Euclid: 2 November 2010

Permanent link to this document
http://projecteuclid.org/euclid.jmsj/1288703107

Digital Object Identifier
doi:10.2969/jmsj/06241317

Zentralblatt MATH identifier
05835145

Mathematical Reviews number (MathSciNet)
MR2761899

Subjects
Primary: 32J17: Compact $3$-folds
Secondary: 32M05: Complex Lie groups, automorphism groups acting on complex spaces [See also 22E10] 32Q57: Classification theorems 32D15: Continuation of analytic objects

Keywords
compact non-Kahler manifold projective structure algebraic dimension

Citation

KATO, Masahide. Compact quotients with positive algebraic dimensions of large domains in a complex projective 3-space. J. Math. Soc. Japan 62 (2010), no. 4, 1317--1371. doi:10.2969/jmsj/06241317. http://projecteuclid.org/euclid.jmsj/1288703107.


Export citation

References

  • G. Dloussky, Envelopes d'holomorphie et prolongements d'hypersurfaces, Seminaire Pierre Lelong, Année 1975–76, Lecture Notes in Math., 578, Springer, 1977, pp.,217–235.
  • G. Fischer, Complex Analytic Geometry, Lecture Notes in Math., 538, Springer-Verlag, 1976.
  • A. Fujiki, Algebraic reduction of twistor spaces of Hopf surfaces, Osaka J. Math., 37 (2000), 847–858.
  • A. Fujiki, On the general fiber of an algebraic reduction of a compact complex manifolds of algebraic codimension two, J. Math. Kyoto Univ., 42 (2002), 789–793.
  • P. Griffiths and J. Harris, Principles of Algebraic Geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978.
  • H. Hopf, Enden offener Räume und unendliche diskontinuierliche Gruppen, Comment. Math. Helv., 16 (1944), 81–100.
  • M. Inoue, On surfaces of class $\VIIo$, Invent. Math., 24 (1974), 269–310.
  • S. M. Ivashkovich, Extension properties of meromorphic mappings with values in non-Kähler complex manifolds, Ann. of Math., 160 (2004), 795–837.
  • K. Kodaira, On the structure of compact complex analytic surfaces, I, Amer. J. Math., 86 (1964), 751–798.
  • Ma. Kato, On compact complex 3-folds with lines, Japanese J. Math., 11 (1985), 1–58.
  • Ma. Kato, Compact complex 3-folds with projective structures, The infinite cyclic fundamental group case, Saitama Math. J., 4 (1986), 35–49.
  • Ma. Kato, Factorization of compact complex 3-folds which admit certain projective structures, Tohoku Math. J., 41 (1989), 359–397.
  • Ma. Kato, Examples on an extension problem of holomorphic maps and a holomorphic 1-dimensional foliation, Tokyo J. Math., 13 (1990), 139–146.
  • Ma. Kato, Compact quotients of large domains in a complex projective 3-space, Tokyo J. Math., 29 (2006), 209–232.
  • Ma. Kato, Existence of invariant planes in a complex projective 3-space under discrete projective transformation groups, to appear in Tokyo J. Math.
  • Ma. Kato and K. Komada, On Blanchard manifolds, Tokyo J. Math., 30 (2007), 397–401.
  • Ma. Kato and N. Okada, On holomorphic maps into compact non-Kähler manifolds, Ann. Inst. Fourier, Grenoble, 54 (2004), 1827–1854.
  • S. Kobayashi and T. Ochiai, Holomorphic projective structures on compact complex surfaces, Math. Ann., 249 (1980), 75–94.
  • S. Kobayashi and T. Ochiai, Holomorphic projective structures on compact complex surfaces, II, Math. Ann., 255 (1981), 519–521.
  • M. E. Kapovich and L. D. Potyagailo, On the absence of the Ahlfors and Sullivan theorems for Kleinian groups in higher dimensions, Siberian math. J., 32 (1991), 227–237.
  • S. Kawai, On compact complex manifolds of complex dimension 3, II, J. Math. Soc. Japan, 17 (1965), 438–442.
  • B. Maskit, Kleinian groups, GMW 287, Springer-Verlag, 1988.
  • P. J. Myrberg, Untersuchungen über die Automorphen Funktionen Beliebig Vieler Variablen, Acta Math., 46 (1925), 215–336.
  • K. Nishiguchi, Degeneration of K3 surfaces, J. Math. Kyoto Univ., 28 (1988), 267–300.
  • K. Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes Math., 439, Springer-Verlag, 1975.