## Journal of the Mathematical Society of Japan

- J. Math. Soc. Japan
- Volume 47, Number 2 (1995), 253-273.

### $L^{p}$-mapping properties of functions of Schrödinger operators and their applications to scattering theory

#### Article information

**Source**

J. Math. Soc. Japan Volume 47, Number 2 (1995), 253-273.

**Dates**

First available in Project Euclid: 19 November 2008

**Permanent link to this document**

http://projecteuclid.org/euclid.jmsj/1227104379

**Digital Object Identifier**

doi:10.2969/jmsj/04720253

**Mathematical Reviews number (MathSciNet)**

MR1317282

**Zentralblatt MATH identifier**

0841.35096

**Subjects**

Primary: 47F05: Partial differential operators [See also 35Pxx, 58Jxx] (should also be assigned at least one other classification number in section 47)

Secondary: 35J10: Schrödinger operator [See also 35Pxx] 35P05: General topics in linear spectral theory 47A40: Scattering theory [See also 34L25, 35P25, 37K15, 58J50, 81Uxx] 47N50: Applications in the physical sciences 81U05: $2$-body potential scattering theory [See also 34E20 for WKB methods]

#### Citation

JENSEN, Arne; NAKAMURA, Shu. L p -mapping properties of functions of Schrödinger operators and their applications to scattering theory. J. Math. Soc. Japan 47 (1995), no. 2, 253--273. doi:10.2969/jmsj/04720253. http://projecteuclid.org/euclid.jmsj/1227104379.