Abstract
Let be a smooth hypersurface in the projective three space and consider a projection of from to a plane . This projection induces an extension of fields . The point is called a Galois point if the extension is Galois. We study structures of quartic surfaces focusing on Galois points. We will show that the number of the Galois points is zero, one, two, four or eight and the existence of some rule of distribution of the Galois points.
Citation
Hisao YOSHIHARA. "Galois points on quartic surfaces." J. Math. Soc. Japan 53 (3) 731 - 743, July, 2001. https://doi.org/10.2969/jmsj/05330731
Information