Open Access
October, 2006 `Spindles' in symmetric spaces
Peter QUAST
J. Math. Soc. Japan 58(4): 985-994 (October, 2006). DOI: 10.2969/jmsj/1179759533

Abstract

We study families of submanifolds in symmetric spaces of compact type arising as exponential images of s -orbits of variable radii. If the s -orbit is symmetric such submanifolds are the most important examples of adapted submanifolds, i.e. of submanifolds of symmetric spaces with curvature invariant tangent and normal spaces.

Citation

Download Citation

Peter QUAST. "`Spindles' in symmetric spaces." J. Math. Soc. Japan 58 (4) 985 - 994, October, 2006. https://doi.org/10.2969/jmsj/1179759533

Information

Published: October, 2006
First available in Project Euclid: 21 May 2007

zbMATH: 1114.53053
MathSciNet: MR2276177
Digital Object Identifier: 10.2969/jmsj/1179759533

Subjects:
Primary: 53C40
Secondary: 32M15 , 53C35

Keywords: extrinsic geometry , Lie triples , Submanifolds , symmetric spaces

Rights: Copyright © 2006 Mathematical Society of Japan

Vol.58 • No. 4 • October, 2006
Back to Top