Open Access
October, 2006 The horospherical Gauss-Bonnet type theorem in hyperbolic space
Shyuichi IZUMIYA, María del Carmen ROMERO FUSTER
J. Math. Soc. Japan 58(4): 965-984 (October, 2006). DOI: 10.2969/jmsj/1179759532

Abstract

We introduce the notion horospherical curvatures of hypersurfaces in hyperbolic space andshow that totally umbilic hypersurfaces with vanishing curvatures are only horospheres. We also show that the Gauss-Bonnet type theorem holds for the horospherical Gauss-Kronecker curvature of a closed orientable even dimensional hypersurface in hyperbolic space.

Citation

Download Citation

Shyuichi IZUMIYA. María del Carmen ROMERO FUSTER. "The horospherical Gauss-Bonnet type theorem in hyperbolic space." J. Math. Soc. Japan 58 (4) 965 - 984, October, 2006. https://doi.org/10.2969/jmsj/1179759532

Information

Published: October, 2006
First available in Project Euclid: 21 May 2007

zbMATH: 1111.53042
MathSciNet: MR2276176
Digital Object Identifier: 10.2969/jmsj/1179759532

Subjects:
Primary: 53A35
Secondary: 53A05 , 58C27

Keywords: Gauss-Bonnet type theorem , horospherical geometry , hyperbolic Gauss maps , Hyperbolic space , hypersurfaces

Rights: Copyright © 2006 Mathematical Society of Japan

Vol.58 • No. 4 • October, 2006
Back to Top