Journal of Integral Equations and Applications

Chromatic Series with Prolate Spheroidal Wave Functions

G.G. Walter

Full-text: Open access

Article information

J. Integral Equations Applications Volume 20, Number 2 (2008), 263-280.

First available in Project Euclid: 6 June 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 41A58: Series expansions (e.g. Taylor, Lidstone series, but not Fourier series) 33F30
Secondary: 41A30: Approximation by other special function classes 42A38: Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type

Chromatic derivatives prolate spheroidal wave functions wavelets signal processing


Walter, G.G. Chromatic Series with Prolate Spheroidal Wave Functions. J. Integral Equations Applications 20 (2008), no. 2, 263--280. doi:10.1216/JIE-2008-20-2-263.

Export citation


  • A. Erdelyi, Tables of Integral Transforms, Bateman Manuscript Project, Vol. I, McGraw Hill, NewYork, (1954).
  • I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, (1992).
  • I. Djokovic, P. P. Vaidyanathan, Generalized Sampling Theorems in Multiresolution Subspaces, IEEE Trans. Signal Processing, 45, (1997), 583-599.
  • T. Herron, J. Byrnes, Families of Orthogonal Differential Operators for Signal Processing, Technical report 2, Kromos Technology (, June, (2001).
  • A. Ignjatovic, Introduction to Signal Processing Based on Differential Operators, Technical report 1, Kromos Technology (, February, (2001).
  • A. Ignjatovic, Numerical Differentiation and Signal Processing, Proc. Int. Conf. on Inf., Comm., and Sig. Proc., (ICICS 2001), Singapore, Oct. 15-18, (2001).
  • A. Ignjatovic, Local Approximations based on Orthogonal Differential Operators, J. Fourier Analysis and Applications, 13, 209--320, (2007).
  • M. J. Narasimha, A. Ignjatovic, P. P. Vaidyanathan, Chromatic Derivative Filter Banks, IEEE Sig. Proc. Letters, 9, 215-216, (2002).
  • A. Papoulis, Signal Analysis, McGraw-Hill, New York, (1977).
  • L. Shepp, C. H. Zhang, Fast Functional Magnetic Resonance Imaging via Prolate Wavelets, Appl. Comp. Harmonic Anal. 9, 99-119, (2000).
  • D. Slepian, H.O. Pollak, Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty I, Bell System Tech J, 40, 43-64, (1961).
  • D. Slepian, Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty IV, Bell System Tech J. 43, 3009-3058, (1964).
  • G. Szeg, Orthogonal polynomials, Colloq. Pub., Vol. 23, Amer. Math. Soc., Providence, RI, (1967).
  • G. G. Vaidyanathan, A. Ignjatovic, M. J. Narasimha, New Sampling Expansion for Bandlimited Signals Based on Chromatic Derivatives, Proc. 35th Asilomar Cnf. Signals, Systems, and Computers, Monterey, CA, Nov. (2001).
  • P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, Inc., (1993).
  • H. Volkmer, Spheroidal Wave Functions, in Handbook of Mathematical Functions, Nat. Bureau of Sts. Applied Math. Series, (2004).
  • H. Volkmer, Error Estimates for Rayleigh-Ritz Approximations of Eigenvalues and Eigenfunctions of the Mathieu and Spheroidal Wave Equation, Const. Approx. 20, 39-54, (2004).
  • G. G. Walter, Prolate Spheroidal Wavelets: Differentiation, Translation, and Convolution Made Easy, J. Fourier Analysis and Applications, 11, 73-84, (2004).
  • G. G. Walter, Prolate Spheroidal Wave Functions and Wavelets, in Advances in Imaging and Electon Physics, P. W. Hawkes, ed. 139, 225-295, Academic Press, (2006).
  • G. G. Walter, X. Shen, Wavelets and Other Orthogonal Systems, 2nd ed., CRC Press, Boca Raton, FL., USA, (2000).
  • G. G. Walter, X. Shen, Wavelets Based on Prolate Spheroidal Wave Functions, Journal of Fourier Analysis and Applications, 10 , 1-26, (2004).
  • G. G. Walter, X. Shen, A Sampling Expansion for Nonbandlimited Signals in Chromatic Derivatives, IEEE Trans. Sig. Proc., 53, 1291-1298, (2005).
  • G. G. Walter, X. Shen, Sampling with Prolate Spheroidal Functions, J. Samp. Th. in Sig. and Image Proc., 2, 25-52, (2003).
  • G. G. Walter, T. Soleski, A friendly Method of Computing Prolate Spheroidal Wave Functions and Wavelets. Comp. Harmonic Anal., 19, 432-443, (2004).
  • A.H. Zemanian, Distibution Theory and Transform Analysis, Dover, New York, (1965).