Journal of Integral Equations and Applications

Corrington's Walsh Function Method Applied to a Nonlinear Integral Equation

B.G. Sloss and W.F. Blyth

Full-text: Open access

Article information

Source
J. Integral Equations Applications Volume 6, Number 2 (1994), 239-256.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
http://projecteuclid.org/euclid.jiea/1181075806

Digital Object Identifier
doi:10.1216/jiea/1181075806

Mathematical Reviews number (MathSciNet)
MR1296377

Zentralblatt MATH identifier
0816.65138

Subjects
Primary: 45L10
Secondary: 45G10: Other nonlinear integral equations 42C10: Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)

Citation

Sloss, B.G.; Blyth, W.F. Corrington's Walsh Function Method Applied to a Nonlinear Integral Equation. J. Integral Equations Applications 6 (1994), no. 2, 239--256. doi:10.1216/jiea/1181075806. http://projecteuclid.org/euclid.jiea/1181075806.


Export citation

References

  • M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, Dover, New York, 1965.
  • M.S. Corrington, A solution of differential and integral equations with Walsh functions, IEEE Trans. Circuit Theory, CT-20, 5 (1973), 470-476.
  • B.E. Golubov, A. Efimov and V. Skvortsov, Walsh series and transformations, Kluwer, Netherlands, 1991.
  • W. Okrasinski, Non-negative solutions of some nonlinear integral equations, Ann. Polon. Math. 44 (1984), 209-218.
  • R.E.A.C. Paley, A remarkable series of orthogonal functions (I), London Math. Soc. 34 (1932), 241-264.
  • --------, A remarkable series of orthogonal functions (II), London Math. Soc. 34 (1932), 265-279.
  • H. Rademacher, Einige sätze über Reihen von Allgemein Orthogonalen funktionen, Math. Annal. 87 (1922), 112-138.
  • F. Schipp, W.R. Wade, P. Simon and J. Pal, Walsh series: An introduction to dyadic harmonic analysis, Adam Hilger, New York, 1990.
  • B.G. Sloss and W.F. Blyth, A-priori error estimates for Corrington's Walsh function method, RMIT Mathematics Dept. Research Report 17 (1991).
  • J.L. Walsh, A closed set of normal orthogonal functions, Amer. J. Math. 45 (1923), 5-24.
  • E. Zeidler, Nonlinear functional analysis and its applications, Vol. 1 -1986.