Journal of Integral Equations and Applications

Numerical Solutions for Weakly Singular Hammerstein Equations and their Superconvergence

H. Kaneko, R.D. Noren, and Y. Xu

Full-text: Open access

Article information

Source
J. Integral Equations Applications Volume 4, Number 3 (1992), 391-407.

Dates
First available: 5 June 2007

Permanent link to this document
http://projecteuclid.org/euclid.jiea/1181075699

Digital Object Identifier
doi:10.1216/jiea/1181075699

Mathematical Reviews number (MathSciNet)
MR1184714

Zentralblatt MATH identifier
0764.65085

Citation

Kaneko, H.; Noren, R.D.; Xu, Y. Numerical Solutions for Weakly Singular Hammerstein Equations and their Superconvergence. Journal of Integral Equations and Applications 4 (1992), no. 3, 391--407. doi:10.1216/jiea/1181075699. http://projecteuclid.org/euclid.jiea/1181075699.


Export citation

References

  • K. Atkinson, The numerical solution of Fredholm integral equations of the second kind, SIAM J. Num. Anal. 4 (1967), 337-349.
  • --------, The numerical solution of Fredholm integral equations of the second kind with singular kernels, Num. Math. 19 (1972), 248-259.
  • --------, The numerical evaluation of fixed points of completely continuous operators, SIAM J. Num. Anal. 10 (1973), 799-807.
  • G.A. Chandler, Galerkin method for boundary integral equations on polygonal domains, J. Austral. Math. Soc. Ser. B 26 (1984), 1-13.
  • I. Graham, Singular expansions for the solution of second kind Fredholm integral equations with weakly singular convolution kernels, J. Integral Equations Appl. 4 (1982), 1-30.
  • I. Graham and C. Schneider, Product integration for weakly singular integral equations, in Constructive methods for the practical treatment of integral equations (G. Hammerlin and K. Hoffmann, eds.), ISNM 73, Birkhauser, 1985, 156-164.
  • H. Kaneko, R. Noren and Y. Xu, Regularity of the solution of Hammerstein equations with weakly singular kernel, Integral Equations Operator Theory, 13 (1990), 660-670.
  • M. Krasnoselskii, Topological methods for nonlinear integral equations, Pergamon Press, New York, 1964.
  • S. Kumar, Superconvergence of a collocation-type method for Hammerstein equations, IMA J. Num. Anal. 7 (1987), 313-325.
  • S. Kumar and I. Sloan, A new collocation-type method for Hammerstein integral equations, Math. Comp. 48 (1987), 585-593.
  • R. Piessens and M. Branders, Numerical solution of integral equations of mathematical physics using Chebyshev polynomials, J. Comp. Phys. 21 (1976), 178-196.
  • J. Rice, On the degree of convergence of nonlinear spline approximations in Approximation with special emphasis on spline functions (I.J. Schoenberg, ed.), Academic Press, New York, 1969, 349-365.
  • G. Richter, On weakly singular Fredholm integral equations with displacement kernels, J. Math. Anal. Appl. 55 (1976), 32-42.
  • C. Schneider, Regularity of the solution to a class of weakly singular Fredholm integral equations of the second kind, Integral Equations Operator Theory 2 (1979), 62-68.
  • --------, Product integration for weakly singular integral equations, Math. Comp. 36 (1981), 207-213.
  • I. Sloan, On the numerical evaluation of singular integrals, BIT 18 (1978), 91-102.
  • G. Vainikko, Perturbed Galerkin method and general theory of approximate methods for nonlinear equations, Zh. Vychisl. Mat. i Mat. Fiz. 7 (1967), 723-751. Engl. Translation, U.S.S.R. Comp. Math. and Math. Phys. 7, No. 4 (1967), 1-41.
  • G. Vainikko and P. Uba, A piecewise polynomial approximation to the solution of an integral equation with weakly singular kernel, J. Austral. Math. Soc. Series B, 22 (1981), 431-438.
  • R. Weiss, On the approximation of fixed points of nonlinear compact operators, SIAM J. Num. Anal. 11 (1974), 550-553.