Journal of Differential Geometry

Filling Riemannian manifolds

Mikhael Gromov

Full-text: Open access

Article information

Source
J. Differential Geom. Volume 18, Number 1 (1983), 1-147.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
http://projecteuclid.org/euclid.jdg/1214509283

Mathematical Reviews number (MathSciNet)
MR697984

Zentralblatt MATH identifier
0515.53037

Subjects
Primary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20]
Secondary: 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60] 57R99: None of the above, but in this section

Citation

Gromov, Mikhael. Filling Riemannian manifolds. J. Differential Geom. 18 (1983), no. 1, 1--147. http://projecteuclid.org/euclid.jdg/1214509283.


Export citation

References

  • [1] R. D. M. Accola, Differential and extremal lengths on Riemannian surfaces, Proc. Nat. Acad. Sci. U.S.A. 46 (1960) 540-543.
  • [2] W. K. Allard, On the first variation of a varifold, Ann. of Math. (2) 95 (1972) 417-491.
  • [3] F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. of Math. (2) 87 (1968) 321-391.
  • [4] F. J. Almgren, Jr., An isoperimetric inequality, Proc. Amer. Math. Soc. 15 (1964) 284-285.
  • [5] F. J. Almgren, Jr., The homotopy groups of the integral cycle groups, Topology 1 (1962) 257-299.
  • [6] F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc. No. 4, 1976, 165.
  • [7] T. F. Banchoff and W. F. Pohl, A generalization of the isoperimetric inequality, J. Differential Geometry 6 (1971) 175-192.
  • [8] M. Berger, Lectures on geodesics in Riemannian geometry, Tata Institute, Bombay, 1965.
  • [9] M. Berger, Du cote de chez Pu, Ann. Sci. Ecole Norm. Sup. 4 (1972) 1-44.
  • [10] M. Berger, A l'ombre de Loewner, Ann. Sci. Ecole Norm. Sup. 4 (1972) 241-260.
  • [11] M. Berger, Isosystolic and isembolic inequalities, preprint.
  • [12] M. Berger, Une borne inferieure pour le volume d'une variete riemannienne en fonction du rayon d'injectivite, Ann. Inst. Fourier (Grenoble) 30 (1980) 259-265.
  • [13] M. Berger, Aire des disques et rayon d'injectivite dans les varietes riemanniennes, C. R. Acad. Sci. Paris (1981).
  • [14] A. S. Besikowic, On two problems of Loewner, J. London Math. Soc. 27 (1952) 141-144.
  • [15] C. Blatter, Uber Extremallangen auf geschlossenen Flachen, Comment. Math. Helv. 35 (1961) 153-168.
  • [16] E. Bombieri, An introduction to minimal currents and parametric variational problems, preprint, Institute for Advanced Study, Princeton.
  • [17] Y. D. Burago and V. A. Zalgaller, Geometric inequalities, Nauka, 1980, (Russian).
  • [18] P. Buser and H. Karcher, Gromov's almost flat manifolds, Asterisque 81 (1981) Soc. Math. France.
  • [19] C. Chabauty, Limite d'ensembles et geometrie des nombres, Bull. Soc. Math. France 78 (1950) 143-151.
  • [20] J. Cheeger and D. G. Ebin, Comparison theorems in Riemannian geometry, North Holland, Amsterdam, 1975.
  • [21] Y. Colin de Verdiere, Spectre du Laplacien et longueurs des geodesiques periodiques, Compositio Math. 27 (1973) 159-184.
  • [22] W. R. Derrick, A weighted volume diameter inequality for n-cubes, J. Math. Mech. 18 (1968) 453-472.
  • [23] W. R. Derrick, A volume-diameter inequality for n-cubes, J. Analyse Math. 22 (1969) 1-36.
  • [24] E. I. Dinaburg, On the relation among various entropy characteristics of dynamical systems, Math. USSR-Izv. 5 (1971) 337-378.
  • [25] P. Eberlein, Some properties of the fundamental groups of a Fuchsian manifold, Invent. Math. 19 (1973) 5-13.
  • [26] Ja. M. Eliashberg, Singularities of folding type, Izv. Akad. Nauk USSR, Ser. Mat. 34 (1970) 1110-1126.
  • [27] H. Federer, Real flat chains, cochains and variational problems, Indiana Univ. Math. J. 24 (1974) 351-407.
  • [28] H. Federer and W. H. Fleming, Normal and integral currents, Ann. of Math. 72 (1960) 458-520.
  • [29] T. Figiel, J. Lindenstrauss and V. D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977) 53-94.
  • [30] R. L. Graham, B. L. Rothschild and J. H. Spencer, Ramsey theory, John Wiley, New York, 1980.
  • [31] M. Gromov, Manifolds of negative curvature, J. Differential Geometry 13 (1978) 223-230.
  • [32] M. Gromov, Volume and bounded cohomology, Publ. Math., 56 (1983) 213-307.
  • [33] M. Gromov, Hyperbolic manifolds groups and actions, Annals Math. Studies, No. 97, Princeton University Press, Princeton, 1981, 183-215.
  • [34] M. Gromov, Groups of polynomial growth and expanding maps, Publ. Math. 53 (1981) 53-78.
  • [35] M. Gromov, Paul Levy isoperimetric inequality, preprint.
  • [36] M. Gromov and Ja. M. Eliashberg, Constructions of non-singular isoperimetric films, Proc. MIAN, USSR 66 (1971) 18-33.
  • [37] M. Gromov, J. Lafontaine and P. Pansu, Structures metriques pour les varietes riemanniennes, Cedic/Fernand Nathan, Paris, 1981.
  • [38] M. Gromov and H. B. Lawson, Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. III (1980) 423-434.
  • [39] M. Gromov and H. B. Lawson, Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, preprint, State University of New York at Stony Brook, 1982.
  • [40] M. Gromov and V. D. Milman, A topological application of the isoperimetric inequality, Amer. J. Math, to appear.
  • [41] V. W. Guillemin and D. A. Kazhdan, Some inverse spectral results for negatively curved n-manifolds, Proc. Sympos. Pure Math. Vol. 36, Amer. Math. Soc, 1980, 153-181.
  • [42] J. J. Hebda, Some lower bounds for the area of surfaces, Invent. Math. 65 (1982)485-491.
  • [43] E. Heintze, Mannigfaltigkeiten negativer Krummung, preprint, University of Bonn, 1976.
  • [44] J. Hersch, Sur la frequence fondamentale d'une membrane vibrante: evaluations par defaut et principe du maximum, Z. Angew. Math. Phys. 11 (1967) 387-413.
  • [45] D. A. Hoffman and J. Spruck, A Sobolev inequality for Riemannian submanifolds, Proc. Sympos. Pure Math. Vol. 27, Amer. Math. Soc, 1975, 139-143.
  • [46] W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press, Princeton, 1948.
  • [47] J. A. Jenkins, On the existence of certain general extremal metrics, Ann. of Math. 66 (1957) 440-453.
  • [48] J. A. Jenkins, Univalent functions and conformal mappings, Springer, Berlin, 1958.
  • [49] A. B. Katok, Entropy and closed geodesics, Technical Report, University of Maryland, 1981.
  • [50] M. L. Katz, Jr., The filling radius of two points homogeneous spaces, preprint, 1982.
  • [51] D. A. Kazhdan and G. A. Margulis, A proof of Selberg's Hypothesis, Mat. Sb. 75 (117) (1968) 163-168.
  • [52] H. B. Lawson, Jr., Minimal varieties, Proc. Sympos. Pure Math. Vol. 27, Part 1, Amer. Math. Soc, 1975, 143-177.
  • [53] P. Levy, Problemes concrets a l'analyse fonctionnelle, Paris, 1951.
  • [54] P. Li and S. T. Yau, A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue for compact surfaces, Invent. Math. 69 (1982) 269-291.
  • [55] A. Lubotzky, Group representations, p-adic analytic groups and lattices in S12 (C), preprint, 1982.
  • [56] A. Manning, Topological entropy for geodesic flows, Ann. of Math. 110 (1979), 567-573.
  • [57] G. A. Margulis, Quotient groups of discrete subgroups and measure theory, Functional Anal. Appl. 12 (1978) 295-305.
  • [58] J. H. Michael and L. M. Simon, Sobolev and mean value inequalities on generalized submanifolds of R", Comm. Pure Appl. Math. 26 (1973) 361-379.
  • [59] R. Michel, Sur la rigidite imposee par la longueur des geodesiques, Invent. Math. 65 (1981) 71-85.
  • [60] V. D. Milman, A new proof of the theorem of A. Dvoretzky on sections of convex bodies, Functional Anal. Appl. 5 (1971) 28-37.
  • [61] M. Morse, A fundamental class of geodesics on any closed surface of genus greater than one, Trans. Amer. Math. Soc. 26 (1924) 25-60.
  • [62] P. Pansu, Croissance des boules et des geodesiques fermee dans les subvarietes, Ergodic Theory and Dynamical Systems, to appear.
  • [63] P. Pansu, Une inegalite isoperimetrique sur le groupe d eisenberg de dimension 3, C. R. Acad. Sci. Paris, to appear.
  • [64] P. M. Pu, Some inequalities in certain nonorientable Riemannian manifolds, Pacific J. Math. 2 (1952) 55-71.
  • [65] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer, Berlin, 1972.
  • [66] B. Randol, Cylinders in Riemann surfaces, Comment. Math. Helv. 54 (1979) 1-5.
  • [67] Yu. G. Reshetnyak, An extremal problem from the theory of convex curves, Uspehi. Mat. Nauk 8 (1953) 125-126.
  • [68] L. A. Santal, Introduction to integral geometry, Hermann, Paris, 1953.
  • [69] J. J. Schaffer, inner diameter, perimeter and girth of spheres, Math. Ann. 173 (1967) 59-82.
  • [70] L. Schwartz, Geometry and probability in Banach spaces, Bull. Amer. Math. Soc. 4 (1981) 135-143.
  • [71] D. Sullivan, Infinitesimal calculations in topology, Publ. Math. 50 (1978) 269-331.
  • [72] D. Sullivan, Discrete conformal groups and measurable dynamics, Bull. Amer. Math. Soc. 6 (1982) 57-74.
  • [73] O. Teichmuller, Unterschungen uber konforme und quasikonforme Abbildung, Deutsch. Math. 3 (1938) 621-678.
  • [74] W. P. Thurston, Geometry and topology of 3-manifolds, Princeton, 1978.
  • [75] J. L. Tits, Free subgroups of linear groups, J. Algebra 20 (1972) 250-270.
  • [76] P. A. White, Regular convergence, Bull. Amer. Math. Soc. 60 (1954) 431-443.
  • [77] P. Yang and S. T. Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 7 (1980) 55-63.
  • [78] E. M. Zaustinsky, Loewner's Riemannian approximation of Finsler spaces, preprint, State University of New York at Stony Brook, 1976.