Open Access
July 2010 Nonalgebraic hyperkähler manifolds
Frédéric Campana, Keiji Oguiso, Thomas Peternell
J. Differential Geom. 85(3): 397-424 (July 2010). DOI: 10.4310/jdg/1292940689

Abstract

We study the algebraic dimension $a(X)$ of a compact hyperkähler manifold of dimension $2n$. We show that $a(X)$ is at most $n$ unless $X$ is projective. If a compact Kähler manifold with algebraic dimension 0 and Kodaira dimension 0 has a minimal model, then only the values 0, $n$ and $2n$ are possible. In case of middle dimension, the algebraic reduction is holomorphic Lagrangian. If $n = 2$, then - without any assumptions - the algebraic dimension only takes the values 0, 2 and 4. The paper also gives structure results for ”generalised hyperkähler” manifolds and studies nef lines bundles.

Citation

Download Citation

Frédéric Campana. Keiji Oguiso. Thomas Peternell. "Nonalgebraic hyperkähler manifolds." J. Differential Geom. 85 (3) 397 - 424, July 2010. https://doi.org/10.4310/jdg/1292940689

Information

Published: July 2010
First available in Project Euclid: 21 December 2010

zbMATH: 1232.53042
MathSciNet: MR2739808
Digital Object Identifier: 10.4310/jdg/1292940689

Rights: Copyright © 2010 Lehigh University

Vol.85 • No. 3 • July 2010
Back to Top