Journal of Differential Geometry

Embedded surfaces and the structure of Donaldson's polynomial invariants

P. B. Kronheimer and T. S. Mrowka

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
J. Differential Geom. Volume 41, Number 3 (1995), 573-734.

Dates
First available: 26 June 2008

Permanent link to this document
http://projecteuclid.org/euclid.jdg/1214456482

Mathematical Reviews number (MathSciNet)
MR1338483

Zentralblatt MATH identifier
0842.57022

Subjects
Primary: 57R40: Embeddings
Secondary: 57R55: Differentiable structures 57R57: Applications of global analysis to structures on manifolds, Donaldson and Seiberg-Witten invariants [See also 58-XX] 57R95: Realizing cycles by submanifolds 58D27: Moduli problems for differential geometric structures

Citation

Kronheimer, P. B.; Mrowka, T. S. Embedded surfaces and the structure of Donaldson's polynomial invariants. Journal of Differential Geometry 41 (1995), no. 3, 573--734. http://projecteuclid.org/euclid.jdg/1214456482.


Export citation

References

  • [1] E. Arbarello, M. Cornalba, P.A. Griffiths fe J. Harris, Geometry of Algebraic Curves, /, Grundlehren der math. Wissenschaften 267, Springer-Verlag, New York, 1985.
  • [2] M.F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Phil. Trans. R. Soc. Lond. A 308 (1982), 523-615.
  • [3] M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry in Riemannian geometry, I, Math. Proc. Camb. Phil. Soc. 77 (1975a) 43-69.
  • [4] S. Bando, Einstein-Hermitian metrics on non-compact Kahler manifolds, (preprint).
  • [5] O. Biquard, Sur les fibres paraboliques sur une surface complexe, (preprint).
  • [6] R. Brussee, Some remarks on the Kronheimer-Mrowka classes of algebraic surfaces, (preprint).
  • [7] N.P. Buchdahl, Hermitian-Einstein connections and stable vector bundles over compact complex surfaces, Math. Ann. 280 (1988) 625-648.
  • [8] S.K. Donaldson, Connections, cohomology and the intersection forms of four-manifolds, J. Differential Geometry 24 (1986) 275-341.
  • [9] S.K. Donaldson, Connections, The orientation of Yang-Mills moduli spaces and J^-manifold topology, J. Differential Geometry 26 (1987) 397-428.
  • [10] S.K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29 (1990) 257-315.
  • [11] S.K. Donaldson and: P.B. Kronheimer, The geometry of four-manifolds, Oxford University Press (1990).
  • [12] J.L. Evans, D.Phil, qualifying dissertation, Oxford 1992 (unpublished).
  • [13] R. Fintushel and R.J. Stern, The blowup formula for Donaldson invariants, (preprint).
  • [14] R. Fintushel and R.J. Stern, Donaldson invariants of 4-manifolds with simple type, (in preparation)
  • [15] R. Fintushel and R.J. Stern, Rational blowdowns of smooth ^-manifolds, (in preparation)
  • [16] D.S. Freed and K.K. Uhlenbeck, Instantons and four-manifolds, M.S.R.I. Publications, Vol. 1, (Springer-Verlag, New York, 1984).
  • [17] R. Friedman and J.W. Morgan, Smooth J^-manifolds and Complex Surfaces, Ergebnisse der Math, und Grenz. 3, (Springer-Verlag, New York, 1994).
  • [18] R.E. Gompf, Three exotic R4 s and other anomolies, J. Differential Geometry 18 (1983) 317-28.
  • [19] R.E. Gompf and T.S. Mrowka, Irreducible 4-manifolds need not be complex, Ann. Math. 138 (1993) 61-111.
  • [20] G.-Y. Guo, Differential geometry of complex vector bundles on non-compact manifolds, (D.Phil, thesis, Oxford, 1993).
  • [21] H.-J. Hoppe and H. Spindler, Modulraume stabiler 2-Bundel auf Regelflachen, Math. Ann. 249 (1980) 127-40.
  • [22] J.C. Hurtubise and R.J. Milgram, The Atiyah-Jones conjecture for ruled surfaces, (preprint).
  • [23] D. Kotschick, 50 (3) invariants for ^-manifolds with 6^" = 1, Proc. London Math. Soc. 63 (1991) 426-48.
  • [24] P.B. Kronheimer, The genus-minimizing property of algebraic curves, Bull. Amer. Math. Soc. 29 (1993) 63-9.
  • [25] P.B. Kronheimer, An obstruction to removing intersection points in immersed surfaces, Topology (to appear).
  • [26] P.B. Kronheimer and T.S. Mrowka, Gauge theory for embedded surfaces: I, Topology 32 (1993) 773-826.
  • [27] P.B. Kronheimer and T.S. Mrowka, Gauge theory for embedded surfaces: II, Topology 34 (1995) 37-97.
  • [28] P.B. Kronheimer and T.S. Mrowka, Recurrence relations and asymptotics for four-manifold invariants, Bull. Amer. Math. Soc. 30 (1994) 215-21.
  • [29] H.B. Jr. Lawson, The theory of gauge fields in four dimensions, CBMS Regional Conference Series in Mathematics, 58, American Mathematical Society, Providence, R.I. (1985).
  • [30] J. Li, Kodaira dimension of moduli space of vector bundles on algebraic surfaces, Inventiones Mathematicae 115 (1994) 1-40.
  • [31] P. Lisca, Computation of instanton invariants using Donaldson- Floer theory, (preprint).
  • [32] R. Lockhart and R. McOwen, Elliptic differential operators on noncompact manifolds, Annali di Scoula Norm. Sup. de Pisa, IV-12 (1985) 409-48.
  • [33] T. Matumoto, On diffeomorphisms of a K3 surface, (Hiroshima University Reprint, 1985).
  • [34] J.W. Morgan, T.S. Mrowka, A note on Donaldson's polynomial invariants, Int. Math. Research Notices 10 (1992) 223-30.
  • [35] J.W. Morgan, T.S. Mrowka, On the gluing theorem for instantons on manifolds with long tubes, (in preparation).
  • [36] J.W. Morgan, T.S. Mrowka and D. Ruberman, The L2 moduli space and a vanishing theorem for Donaldson's polynomial invariants, Monographs in Geometry and Topology 2, (International Press, 1994).
  • [37] K.G. O'Grady, Donaldson's polynomials for K3 surfaces, J. Differential Geometry 35 (1992) 415-27.
  • [38] K.G. O'Grady, Algebro-geometric analogues of Donaldson's polynomials, Inventiones Mathematicae 107 (1992) 351-395.
  • [39] C.S. Seshadri, Space of unitary vector bundles on a compact Riemann surface, Ann. Math. 85 (1967) 303-36.
  • [40] C.H. Taubes, Gauge theory on asymptotically periodic J^-manifolds, J. Differential Geometry 17 (1987) 363-430.
  • [41] C.H. Taubes, L2 moduli spaces on manifolds with cylindrical ends, Monographs in Geometry and Topology 1, (International Press, 1994).
  • [42] C.H. Taubes, Donaldson-Floer theory for circle bundles over Riemann surfaces, (in preparation).
  • [43] E. Witten, Supersymmetric Yang-Mills theory on a four-manifold, (preprint).