Journal of Differential Geometry

Strange actions of groups on spheres

Michael H. Freedman and Richard Skora

Full-text: Open access

Article information

Source
J. Differential Geom. Volume 25, Number 1 (1987), 75-98.

Dates
First available in Project Euclid: 26 June 2008

Permanent link to this document
http://projecteuclid.org/euclid.jdg/1214440725

Digital Object Identifier
doi:10.4310/jdg/1214440725

Mathematical Reviews number (MathSciNet)
MR873456

Zentralblatt MATH identifier
0588.57024

Subjects
Primary: 57S25: Groups acting on specific manifolds
Secondary: 30C60 57N45: Flatness and tameness 57S99: None of the above, but in this section

Citation

Freedman, Michael H.; Skora, Richard. Strange actions of groups on spheres. J. Differential Geom. 25 (1987), no. 1, 75--98. doi:10.4310/jdg/1214440725. http://projecteuclid.org/euclid.jdg/1214440725.


Export citation

References

  • [1] M. Bestvina, to appear.
  • [2] M. Bestvina and D. Cooper, A wild Cantor set as the limit set of a conformal group action on S3 to appear.
  • [3] R. H. Bing, A homeomorphism between the 3-sphere and the sum of two solid horned spheres, Ann. of Math. 56 (1952) 354-362.
  • [4] R. H. Bing, Shrinking without Lengthening, preprint.
  • [5] J. Cannon, Shrinking cell-like decompositions of manifolds. Codimension three, Ann. of Math. 110 (1979) 83-112.
  • [6] R. J. Daverman, Embedding phenomena based upon decompositon theory: Wild Cantor sets satisfying strong homogeneity properties, Proc. Amer. Math. Soc. 75 (1979) 177-182.
  • [7] R. D. Edwards, Suspensions of homology spheres, unpublished.
  • [8] R. D. Edwards, Approximating certain cell-likemaps by homeomorphisms, unpublished.
  • [9] M. H. Freedman, The disk theorem for four dimensional manifolds, Proc. Internat. Congr. Math. (Warsaw), 1982, 647-663.
  • [10] M. H. Freedman, A geometric reformulation of [math]-dimensional surgery, Topology Appl., to appear.
  • [11] F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976) 172-199.
  • [12] C. H. Giffen, The generalized Smith conjecture, Amer. J. Math. 88 (1966) 187-198.
  • [13] R. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. 89 (1969) 575-582.
  • [14] I. Kra, Automorphic forms and Klienian groups, Benjamin, Reading, MA, 1972.
  • [15] Gaven Martin, Discrete quasiconformal groups that are not the quasiformal conjugates of Mobius groups, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 11 (1986).
  • [16] E. Moise, Affine structures in 3-manifolds. I-V, Ann. of Math. 54 (1951) 506-553; 55 (1952) 172-176, 203-214, 215-222; 56 (1952) 96-114.
  • [17] F. Quinn, Ends of maps. III. Dimensions 4 and 5, J. Differential Geometry 17 (1982) 503-521.
  • [18] T. Rad, Uber den Begriff der Riemannschen Flache, Acta Univ. Szeged 2 (1924-26) 101-121.
  • [19] R. Skora, Cantor sets in S3 with simply connected complements, Topology Appl., to appear.
  • [20] D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann Surfaces and Related Topics (Proc. of the 1978 Stoney Brook Conf., I. Kra and B. Maskit, eds.), Annals of Math. Studies, No. 97, Princeton University Press, Princeton, NJ, 1981, 564-596.
  • [21] P. Tukia, On two-dimensional quasiconformal groups, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 5 (1980) 73-78.
  • [22] P. Tukia, A quasiconformal group not isomorphic to a Mobius group, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 6 (1981) 149-160.
  • [23] Jussi Vaisala, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math., vol. 229, Springer, Berlin, 1971.