Journal of Commutative Algebra

Vanishing of TOR over complete intersections

Olgur Celikbas

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

J. Commut. Algebra Volume 3, Number 2 (2011), 169-206.

First available in Project Euclid: 24 June 2011

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

vanishing of Tor complexity


Celikbas, Olgur. Vanishing of TOR over complete intersections. J. Commut. Algebra 3 (2011), no. 2, 169--206. doi:10.1216/JCA-2011-3-2-169.

Export citation


  • T. Araya and Y. Yoshino, Remarks on a depth formula, a grade inequality and a conjecture of Auslander, Commun. Algebra 26 (1998), 3793-3806.
  • M. Auslander, Modules over unramified regular local rings, Illinois. J. Math. 5 (1961), 631-647.
  • M. Auslander and R.-O. Buchweitz, The homological theory of maximal Cohen-Macaulay approximations, Mem. Soc. Math. France 38 (1989), 5-37.
  • M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1-24.
  • L.L. Avramov, Modules of finite virtual projective dimension, Invent. Math. 96 (1989), 71-101.
  • –––, Infinite free resolutions, in Six lectures on commutative algebra, Bellaterra 1996, Progr. Math. 166, Birkhäuser, Basel, 1998, 1-118.
  • L. Avramov and R.-O. Buchweitz, Support varieties and cohomology over complete intersections, Invent. Math. 142 (2000), 285-318.
  • L. Avramov, V. Gasharov and I. Peeva, Complete intersection dimension, Publ. Math. I.H.E.S. 86 (1997), 67-114.
  • P.A. Bergh, On the vanishing of (co)homology over local rings, J. Pure Appl. Algebra 212 (2008), 262-270.
  • P.A. Bergh and D.A. Jorgensen, On the vanishing of homology for modules of finite complete intersection dimension, J. Pure Appl. Algebra 215 (2011), 242-252.
  • W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge Stud. Adv. Math. 39 (1993).
  • H. Dao, Decency and rigidity over hypersurfaces, arXiv math.AC/ 0611.568, preprint.
  • –––, Asymptotic behavior of Tor over complete intersections and applications, arXiv math.AC/ 0710.5818, preprint.
  • D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), 35-64.
  • E.G. Evans and P. Griffith, Syzygies, London Math. Soc. Notes Ser. 106, 1985.
  • D.R. Grayson and M.E. Stillman, Macaulay 2, A software system for research in algebraic geometry, available from
  • A. Grothendieck, Éléments de géométrie algébrique. IV4, Publ. Math. I.H.E.S. 32, 1967.
  • T.H. Gulliksen, A change of rings theorem, with applications to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167-183.
  • M. Hochster, Topics in the homological theory of modules over commutative rings, CBMS Regional Conf. Ser. Math. 24, Amer. Math. Soc., Providence, RI, 1975.
  • C. Huneke and D. Jorgensen, Symmetry in the vanishing of Ext over Gorenstein rings, Math. Scand. 93 (2003), 161-184.
  • C. Huneke, D. Jorgensen and R. Wiegand, Vanishing theorems for complete intersections, J. Algebra 238 (2001), 684-702.
  • C. Huneke and R. Wiegand, Tensor products of modules and the rigidity of Tor, Math. Ann. 299 (1994), 449-476.
  • –––, Tensor products of modules, rigidity, and local cohomology, Math. Scand. 81 (1997), 161-183.
  • S. Iyengar, Depth for complexes, and intersection theorems, Math. Z. 230 (1999), 545-567.
  • D.A. Jorgensen, Complexity and Tor on a complete intersection, J. Algebra 211 (1999), 578-598.
  • –––, Tor and torsion on a complete intersection, J. Algebra 195 (1997), 526-537.
  • G. Leuschke and R. Wiegand, Ascent of finite Cohen-Macaulay type, J. Algebra 228 (2000), 674-681.
  • S. Lichtenbaum, On the vanishing of Tor in regular local rings, Illinois. J. Math. 10 (1966), 220-226.
  • H. Matsumura, Commutative ring theory, Second edition, Cambridge Stud. Adv. Math. 8, Cambridge University Press, Cambridge, 1989%, xiv+320 pp.
  • C. Miller, Complexity of tensor products of modules and a theorem of Huneke-Wiegand, Proc. Amer. Math. Soc. 126 (1998), 53-60.
  • M.P. Murthy, Modules over regular local rings, Illinois J. Math. 7 (1963), 558-565.
  • C. Peskine and L. Szpiro, Syzygies et multiplicités, C.R. Acad. Sci. Paris �er. A 278 (1974), 1421-1424.
  • P. Roberts, Two applications of dualizing complexes over local rings, Ann. Sci. Ecole Norm.. (4) 9 (1976), 103-106.
  • –––, Le théoréme d'intersection, C.R. Acad. Sci. Paris ér. I Math. 304 (1987), 177-180.
  • P. Samuel, Anneaux gradués factoriels et modules réflexifs, Bull. Soc. Math. France 92 (1964), 237-249.
  • T. Sharif and S. Yassemi, Special homological dimensions and intersection theorem, Math. Scand. 96 (2005), 161-168.
  • K. Yoshida, Tensor products of perfect modules and maximal surjective Buchsbaum modules, J. Pure. Appl. Algebra 123 (1998), 313-326.