Abstract
Let {Zn, n = 0, 1, 2, . . .} be a supercritical branching process, {Nt, t ≥ 0} be a Poisson process independent of {Zn, n = 0, 1, 2, . . .}, then {ZNt, t ≥ 0} is a supercritical Poisson random indexed branching process. We show a law of large numbers, central limit theorem, and large and moderate deviation principles for log ZNt.
Citation
Zhenlong Gao. Yanhua Zhang. "Limit theorems for a supercritical Poisson random indexed branching process." J. Appl. Probab. 53 (1) 307 - 314, March 2016.
Information