Open Access
Spring 2016 Proposed Property 2R counterexamples examined
Martin Scharlemann
Illinois J. Math. 60(1): 207-250 (Spring 2016). DOI: 10.1215/ijm/1498032031

Abstract

In 1985, Akbulut and Kirby analyzed a homotopy $4$-sphere $\Sigma$ that was first discovered by Cappell and Shaneson, depicting it as a potential counterexample to three important conjectures, all of which remain unresolved. In 1991, Gompf’s further analysi showed that $\Sigma$ was one of an infinite collection of examples, all of which were (sadly) the standard $S^{4}$, but with an unusual handle structure.

Recent work with Gompf and Thompson, showed that the construction gives rise to a family $L_{n}$ of $2$-component links, each of which remains a potential counterexample to the generalized Property R Conjecture. In each $L_{n}$, one component is the simple square knot $Q$, and it was argued that the other component, after handle-slides, could in theory be placed very symmetrically. How to accomplish this was unknown, and that question is resolved here, in part by finding a symmetric construction of the $L_{n}$. In view of the continuing interest and potential importance of the Cappell-Shaneson-Akbulut-Kirby-Gompf examples (e.g., the original $\Sigma$ is known to embed very efficiently in $S^{4}$ and so provides unique insight into proposed approaches to the Schoenflies Conjecture) digressions into various aspects of this view are also included.

Citation

Download Citation

Martin Scharlemann. "Proposed Property 2R counterexamples examined." Illinois J. Math. 60 (1) 207 - 250, Spring 2016. https://doi.org/10.1215/ijm/1498032031

Information

Received: 2 October 2015; Published: Spring 2016
First available in Project Euclid: 21 June 2017

zbMATH: 1376.57012
MathSciNet: MR3665179
Digital Object Identifier: 10.1215/ijm/1498032031

Subjects:
Primary: 57M25

Rights: Copyright © 2016 University of Illinois at Urbana-Champaign

Vol.60 • No. 1 • Spring 2016
Back to Top