Illinois Journal of Mathematics

Analytic discs, global extremal functions and projective hulls in projective space

Benedikt Steinar Magnússon

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Using a recent result of Lárusson and Poletsky regarding plurisubharmonic subextensions, we prove a disc formula for the quasiplurisubharmonic global extremal function for domains in $\mathbb{P}^{n}$. As a corollary, we get a characterization of the projective hull for connected compact sets in $\mathbb{P}^{n}$ by the existence of analytic discs.

Article information

Source
Illinois J. Math. Volume 58, Number 2 (2014), 391-404.

Dates
Received: 30 May 2013
Revised: 28 January 2015
First available in Project Euclid: 7 July 2015

Permanent link to this document
http://projecteuclid.org/euclid.ijm/1436275490

Mathematical Reviews number (MathSciNet)
MR3367655

Zentralblatt MATH identifier
1329.32017

Subjects
Primary: 32U05: Plurisubharmonic functions and generalizations [See also 31C10] 32U15: General pluripotential theory 32E99: None of the above, but in this section

Citation

Magnússon, Benedikt Steinar. Analytic discs, global extremal functions and projective hulls in projective space. Illinois J. Math. 58 (2014), no. 2, 391--404. http://projecteuclid.org/euclid.ijm/1436275490.


Export citation

References

  • \beginbarticle \bauthor\binitsB. D. \bsnmDrnovšek and \bauthor\binitsF. \bsnmForstnerič, \batitleCharacterizations of projective hulls by analytic discs, \bjtitleIllinois J. Math. \bvolume56 (\byear2012), page53–\blpage65. \endbarticle \OrigBibText B. D. Drnovšek and F. Forstnerič, Characterizations of projective hulls by analytic discs, Illinois J. Math., 56 (2012), pp. 53-65. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsF. \bsnmForstnerič, \batitleManifolds of holomorphic mappings from strongly pseudoconvex domains, \bjtitleAsian J. Math. \bvolume11 (\byear2007), page113–\blpage126. \endbarticle \OrigBibText F. Forstnerič, Manifolds of holomorphic mappings from strongly pseudoconvex domains, Asian J. Math., 11 (2007), pp. 113–126. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsV. \bsnmGuedj and \bauthor\binitsA. \bsnmZeriahi, \batitleIntrinsic capacities on compact Kähler manifolds, \bjtitleJ. Geom. Anal. \bvolume15 (\byear2005), page607–\blpage639. \endbarticle \OrigBibText V. Guedj and A. Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal., 15 (2005), pp. 607–639. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsF. R. \bsnmHarvey and \bauthor\binitsH. B. \bsnmLawson, \bsuffixJr., \batitleProjective hulls and the projective Gelfand transform, \bjtitleAsian J. Math. \bvolume10 (\byear2006), page607–\blpage646. \endbarticle \OrigBibText F. R. Harvey and H. B. Lawson, Jr., Projective hulls and the projective Gelfand transform, Asian J. Math., 10 (2006), pp. 607–646. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbbook \bauthor\binitsL. \bsnmHörmander, \bbtitleNotions of convexity, \bsertitleModern Birkhäuser Classics, vol. \bseriesno127, \bpublisherBirkhäuser, \blocationBoston, \byear1994. \endbbook \OrigBibText L. Hörmander, Notions of convexity, vol. 127 of Modern Birkhäuser Classics. Birkhäuser Boston, Boston, 1994. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbchapter \bauthor\binitsC. O. \bsnmKiselman, \bctitlePlurisubharmonic functions and potential theory in several complex variables, \bbtitleDevelopment of Mathematics 1950–2000, \bpublisherBirkhäuser, \blocationBasel, \byear2000, pp. page655–\blpage714. \endbchapter \OrigBibText C. O. Kiselman, Plurisubharmonic functions and potential theory in several complex variables, in Development of Mathematics 1950–2000, Birkhäuser, Basel, 2000, pp. 655–714. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbbook \bauthor\binitsM. \bsnmKlimek, \bbtitlePluripotential theory, \bsertitleLondon Mathematical Society Monographs. New Series, vol. \bseriesno6, \bpublisherThe Clarendon Press, Oxford University Press, \blocationNew York, \byear1991. \endbbook \OrigBibText M. Klimek, Pluripotential theory, vol. 6 of London Mathematical Society Monographs. New Series, The Clarendon Press Oxford University Press, New York, 1991. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsF. \bsnmLárusson and \bauthor\binitsE. \bsnmPoletsky, \batitlePlurisubharmonic subextensions as envelopes of disc functionals, \bjtitleMichigan Math. J. \bvolume62 (\byear2013), page551–\blpage565. \endbarticle \OrigBibText F. Lárusson and E. Poletsky, Plurisubharmonic subextensions as envelopes of disc functionals, Michigan Math. J., 62 (2013), pp. 551-565. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsF. \bsnmLárusson and \bauthor\binitsR. \bsnmSigurdsson, \batitleThe Siciak–Zahariuta extremal function as the envelope of disc functionals, \bjtitleAnn. Polon. Math. \bvolume86 (\byear2005), page177–\blpage192. \endbarticle \OrigBibText F. Lárusson and R. Sigurdsson, The Siciak-Zahariuta extremal function as the envelope of disc functionals, Ann. Polon. Math., 86 (2005), pp. 177–192. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsF. \bsnmLárusson and \bauthor\binitsR. \bsnmSigurdsson, \batitleSiciak–Zahariuta extremal functions, analytic discs and polynomial hulls, \bjtitleMath. Ann. \bvolume345 (\byear2009), page159–\blpage174. \endbarticle \OrigBibText F. Lárusson and R. Sigurdsson, Siciak-Zahariuta extremal functions, analytic discs and polynomial hulls, Math. Ann., 345 (2009), pp. 159–174. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsB. \bsnmMagnússon, \batitleExtremal $\omega$-plurisubharmonic functions as envelopes of disc functionals–-Generalization and application to the local theory, \bjtitleMath. Scand. \bvolume111 (\byear2012), page296–\blpage319. \endbarticle \OrigBibText B. Magnússon, Extremal $\omega$-plurisubharmonic functions as envelopes of disc functionals - Generalization and application to the local theory, Math. Scand., 111 (2012), pp. 296–319. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsB. \bsnmMagnússon and \bauthor\binitsR. \bsnmSigurdsson, \batitleDisc formulas for the weighted Siciak–Zahariuta extremal function, \bjtitleAnn. Polon. Math. \bvolume91 (\byear2007), page241–\blpage247. \endbarticle \OrigBibText B. Magnússon and R. Sigurdsson, Disc formulas for the weighted Siciak-Zahariuta extremal function, Ann. Polon. Math., 91 (2007), pp. 241–247. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbchapter \bauthor\binitsE. A. \bsnmPoletsky, \bctitlePlurisubharmonic functions as solutions of variational problems, \bbtitleSeveral complex variables and complex geometry, Part 1 (\bconflocationSanta Cruz, CA, \bconfdate1989), \bsertitleProc. Sympos. Pure Math., vol. \bseriesno52, \bpublisherAmer. Math. Soc., \blocationProvidence, RI, \byear1991, pp. page163–\blpage171. \endbchapter \OrigBibText E. A. Poletsky, Plurisubharmonic functions as solutions of variational problems, in Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989), vol. 52 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1991, pp. 163–171. \endOrigBibText \bptokstructpyb \endbibitem
  • \beginbarticle \bauthor\binitsE. A. \bsnmPoletsky, \batitleHolomorphic currents, \bjtitleIndiana Univ. Math. J. \bvolume42 (\byear1993), page85–\blpage144. \endbarticle \OrigBibText E. A. Poletsky, Holomorphic currents, Indiana Univ. Math. J., 42 (1993), pp. 85–144. \endOrigBibText \bptokstructpyb \endbibitem