Abstract
We establish a result on the existence of nontrivial solution for the following class of biharmonic elliptic equation
\[(\mathrm{P})\quad \Bigl\{\begin{array}{l@{\quad}l}\Delta^{2}u+V(x)u=K(x)f(u)&\mbox{in }R^{N},\\u\neq0,&\mbox{in }R^{N},u\in\mathcal{D}^{2,2}(R^{N}),\end{array}\]
where $\Delta^{2}u=\Delta(\Delta u)$, $V$ and $K$ are nonnegative potentials. $K$ vanishes at infinity and $f$ has a subcritical growth at infinity. The technique used here is the variational approach.
Citation
Waldemar D. Bastos. Olimpio H. Miyagaki. Rônei S. Vieira. "Solution to biharmonic equation with vanishing potential." Illinois J. Math. 57 (3) 839 - 854, Fall 2013. https://doi.org/10.1215/ijm/1415023513
Information