Open Access
Fall 2013 Solution to biharmonic equation with vanishing potential
Waldemar D. Bastos, Olimpio H. Miyagaki, Rônei S. Vieira
Illinois J. Math. 57(3): 839-854 (Fall 2013). DOI: 10.1215/ijm/1415023513

Abstract

We establish a result on the existence of nontrivial solution for the following class of biharmonic elliptic equation

\[(\mathrm{P})\quad \Bigl\{\begin{array}{l@{\quad}l}\Delta^{2}u+V(x)u=K(x)f(u)&\mbox{in }R^{N},\\u\neq0,&\mbox{in }R^{N},u\in\mathcal{D}^{2,2}(R^{N}),\end{array}\]

where $\Delta^{2}u=\Delta(\Delta u)$, $V$ and $K$ are nonnegative potentials. $K$ vanishes at infinity and $f$ has a subcritical growth at infinity. The technique used here is the variational approach.

Citation

Download Citation

Waldemar D. Bastos. Olimpio H. Miyagaki. Rônei S. Vieira. "Solution to biharmonic equation with vanishing potential." Illinois J. Math. 57 (3) 839 - 854, Fall 2013. https://doi.org/10.1215/ijm/1415023513

Information

Published: Fall 2013
First available in Project Euclid: 3 November 2014

zbMATH: 1311.35096
MathSciNet: MR3275741
Digital Object Identifier: 10.1215/ijm/1415023513

Subjects:
Primary: 35J30 , 35J60 , 35J70 , 35J75

Rights: Copyright © 2013 University of Illinois at Urbana-Champaign

Vol.57 • No. 3 • Fall 2013
Back to Top