Open Access
Winter 2001 Complete manifolds with nonnegative Ricci curvature and almost best Sobolev constant
Changyu Xia
Illinois J. Math. 45(4): 1253-1259 (Winter 2001). DOI: 10.1215/ijm/1258138064

Abstract

We prove that for any given integer $n\geq 2$ and $q\in [1, n)$ there exists a constant $\epsilon= \epsilon(n,q)>0$ such that any $n$-dimensional complete Riemannian manifold with nonnegative Ricci curvature, in which the Sobolev inequality

\[ \left(\int_M|f|^{\frac {nq}{n-q}}\,dv\right)^{\frac{n-q}{nq}}\leq (K(n,q)+\epsilon)\left(\int_M|\nabla f|^q \,dv\right)^{\sfrac{1}{q}}, \,\,\forall f\in C_0^{\infty}(M) \]

holds with $K(n,q)$ the optimal constant of this inequality in the $n$-dimensional Euclidean space $R^n$, is diffeomorphic to~$R^n$.

Citation

Download Citation

Changyu Xia. "Complete manifolds with nonnegative Ricci curvature and almost best Sobolev constant." Illinois J. Math. 45 (4) 1253 - 1259, Winter 2001. https://doi.org/10.1215/ijm/1258138064

Information

Published: Winter 2001
First available in Project Euclid: 13 November 2009

zbMATH: 0996.53024
MathSciNet: MR1894894
Digital Object Identifier: 10.1215/ijm/1258138064

Subjects:
Primary: 53C21
Secondary: 31C12

Rights: Copyright © 2001 University of Illinois at Urbana-Champaign

Vol.45 • No. 4 • Winter 2001
Back to Top