Processing math: 100%
Open Access
Spring 2004 Minimal relative Hilbert-Kunz multiplicity
Kei-ichi Watanabe, Ken-ichi Yoshida
Illinois J. Math. 48(1): 273-294 (Spring 2004). DOI: 10.1215/ijm/1258136184

Abstract

In this paper we ask the following question: What is the minimal value of the difference \ehk(I)\ehk(I) for ideals II with lA(I/I)=1? In order to answer to this question, we define the notion of minimal relative Hilbert-Kunz multiplicity for strongly F-regular rings. We calculate this invariant for quotient singularities and for the coordinate rings of Segre embeddings: \bbPr1×\bbPs1\bbPrs1.

Citation

Download Citation

Kei-ichi Watanabe. Ken-ichi Yoshida. "Minimal relative Hilbert-Kunz multiplicity." Illinois J. Math. 48 (1) 273 - 294, Spring 2004. https://doi.org/10.1215/ijm/1258136184

Information

Published: Spring 2004
First available in Project Euclid: 13 November 2009

zbMATH: 1089.13007
MathSciNet: MR2048225
Digital Object Identifier: 10.1215/ijm/1258136184

Subjects:
Primary: 13D40
Secondary: 13A35 , 13H10 , 13H15

Rights: Copyright © 2004 University of Illinois at Urbana-Champaign

Vol.48 • No. 1 • Spring 2004
Back to Top