Open Access
2006 Doob's maximal identity, multiplicative decompositions and enlargements of filtrations
Ashkan Nikeghbali, Marc Yor
Illinois J. Math. 50(1-4): 791-814 (2006). DOI: 10.1215/ijm/1258059492

Abstract

In the theory of progressive enlargements of filtrations, the supermartingale $Z_{t}=\mathbf{P}( g>t\mid \mathcal{F}_{t}) $ associated with an honest time $g$, and its additive (Doob-Meyer) decomposition, play an essential role. In this paper, we propose an alternative approach, using a multiplicative representation for the supermartingale $Z_{t}$, based on Doob's maximal identity. We thus give new examples of progressive enlargements. Moreover, we give, in our setting, a proof of the decomposition formula for martingales , using initial enlargement techniques, and use it to obtain some path decompositions given the maximum or minimum of some processes.

Citation

Download Citation

Ashkan Nikeghbali. Marc Yor. "Doob's maximal identity, multiplicative decompositions and enlargements of filtrations." Illinois J. Math. 50 (1-4) 791 - 814, 2006. https://doi.org/10.1215/ijm/1258059492

Information

Published: 2006
First available in Project Euclid: 12 November 2009

zbMATH: 1101.60059
MathSciNet: MR2247846
Digital Object Identifier: 10.1215/ijm/1258059492

Subjects:
Primary: 60G44
Secondary: 60G40 , 60G48

Rights: Copyright © 2006 University of Illinois at Urbana-Champaign

Vol.50 • No. 1-4 • 2006
Back to Top