Open Access
Fall 2008 Intertwining relations and extended eigenvalues for analytic Toeplitz operators
Paul S. Bourdon, Joel H. Shapiro
Illinois J. Math. 52(3): 1007-1030 (Fall 2008). DOI: 10.1215/ijm/1254403728

Abstract

We study the intertwining relation $XT_\varphi=T_\psi X$ where $T_\varphi $ and $T_\psi$ are the Toeplitz operators induced on the Hardy space $H^2$ by analytic functions $\varphi$ and $\psi$, bounded on the open unit disc~$\mathbb{U}$, and $X$ is a nonzero bounded linear operator on $H^2$. Our work centers on the connection between intertwining and the image containment $\psi(\mathbb{U})\subset\varphi (\mathbb{U})$, as well as on the nature of the intertwining operator $X$. We use our results to study the ``extended eigenvalues'' of analytic Toeplitz operators $T_\varphi$, i.e., the special case $XT_{\lambda\varphi}=T_\varphi X$, where $\lambda$ is a complex number.

Citation

Download Citation

Paul S. Bourdon. Joel H. Shapiro. "Intertwining relations and extended eigenvalues for analytic Toeplitz operators." Illinois J. Math. 52 (3) 1007 - 1030, Fall 2008. https://doi.org/10.1215/ijm/1254403728

Information

Published: Fall 2008
First available in Project Euclid: 1 October 2009

zbMATH: 1174.37003
MathSciNet: MR2546021
Digital Object Identifier: 10.1215/ijm/1254403728

Subjects:
Primary: 37B35
Secondary: 47B33

Rights: Copyright © 2008 University of Illinois at Urbana-Champaign

Vol.52 • No. 3 • Fall 2008
Back to Top