Open Access
Spring 2008 Property ($P$) and Stein neighborhood bases on $C^1$ domains
Phillip S. Harrington
Illinois J. Math. 52(1): 145-151 (Spring 2008). DOI: 10.1215/ijm/1242414125

Abstract

Let $Ω$ be a bounded domain in $ℂ^n$ satisfying Catlin’s Property ($P$). Sibony has shown that $\overline{\Omega}$ possesses a Stein neighborhood basis when the boundary is of class $C^3$. In this paper, we use an alternative characterization of such domains to show that Sibony’s result holds when the boundary is of class $C^1$.

Citation

Download Citation

Phillip S. Harrington. "Property ($P$) and Stein neighborhood bases on $C^1$ domains." Illinois J. Math. 52 (1) 145 - 151, Spring 2008. https://doi.org/10.1215/ijm/1242414125

Information

Published: Spring 2008
First available in Project Euclid: 15 May 2009

zbMATH: 1175.32017
MathSciNet: MR2507238
Digital Object Identifier: 10.1215/ijm/1242414125

Subjects:
Primary: 32T35
Secondary: 32W05

Rights: Copyright © 2008 University of Illinois at Urbana-Champaign

Vol.52 • No. 1 • Spring 2008
Back to Top