Open Access
June 2011 Real hypersurfaces which are contact in a nonflat complex space form
Toshiaki ADACHI, Masumi KAMEDA, Sadahiro MAEDA
Hokkaido Math. J. 40(2): 205-217 (June 2011). DOI: 10.14492/hokmj/1310042828

Abstract

In an $n$ $(\geqq2)$-dimensional nonflat complex space form $\widetilde{M}_n(c)(=\mathbb{C}P^n(c)$ or $\mathbb{C}H^n(c)$), we classify real hypersurfaces $M^{2n-1}$ which are contact with respect to the almost contact metric structure $(\phi,\xi,\eta,g)$ induced from the K\"ahler structure $J$ and the standard metric $g$ of the ambient space $\widetilde{M}_n(c)$. Our theorems show that this contact manifold $M^{2n-1}$ is congruent to a homogeneous real hypersurface of $\widetilde{M}_n(c)$.

Citation

Download Citation

Toshiaki ADACHI. Masumi KAMEDA. Sadahiro MAEDA. "Real hypersurfaces which are contact in a nonflat complex space form." Hokkaido Math. J. 40 (2) 205 - 217, June 2011. https://doi.org/10.14492/hokmj/1310042828

Information

Published: June 2011
First available in Project Euclid: 7 July 2011

zbMATH: 1232.53045
MathSciNet: MR2840106
Digital Object Identifier: 10.14492/hokmj/1310042828

Subjects:
Primary: 53C40
Secondary: 53C22 , 53D10

Keywords: almost contact metric structure , contact manifolds , homogeneous real hypersurfaces of type (B) , nonflat complex space forms , Real hypersurfaces , Sasakian manifolds , Sasakian space forms , standard real hypersurfaces , totally $\eta$-umbilic hypersurfaces

Rights: Copyright © 2011 Hokkaido University, Department of Mathematics

Vol.40 • No. 2 • June 2011
Back to Top