Open Access
November 2016 Uniform hyperbolicity for curve graphs of non-orientable surfaces
Erika Kuno
Hiroshima Math. J. 46(3): 343-355 (November 2016). DOI: 10.32917/hmj/1487991626

Abstract

Hensel-Przytycki-Webb proved that the curve graphs of all orientable surfaces are 17-hyperbolic. In this paper, we show that the curve graphs of nonorientable surfaces are 17-hyperbolic by applying Hensel-Przytycki-Webb’s argument. We also show that the arc graphs of non-orientable surfaces are 7-hyperbolic, and arccurve graphs of (non-)orientable surfaces are 9-hyperbolic.

Citation

Download Citation

Erika Kuno. "Uniform hyperbolicity for curve graphs of non-orientable surfaces." Hiroshima Math. J. 46 (3) 343 - 355, November 2016. https://doi.org/10.32917/hmj/1487991626

Information

Received: 21 March 2016; Revised: 27 August 2016; Published: November 2016
First available in Project Euclid: 25 February 2017

zbMATH: 1377.57019
MathSciNet: MR3614302
Digital Object Identifier: 10.32917/hmj/1487991626

Subjects:
Primary: 20F65 , 57M99

Keywords: arc graphs , arc-curve graphs , curve graphs , Gromov hyperbolic , nonorientable surfaces

Rights: Copyright © 2016 Hiroshima University, Mathematics Program

Vol.46 • No. 3 • November 2016
Back to Top