Open Access
2008 On the existence of a $v2^32$-self map on $M(1,4)$ at the prime 2
M. Behrens, M. Hill, M.J. Hopkins, M. Mahowald
Homology Homotopy Appl. 10(3): 45-84 (2008).

Abstract

Let $M(1)$ be the mod 2 Moore spectrum. J.F. Adams proved that $M(1)$ admits a minimal $v_1$-self map $v^4_1 : \Sigma^8 M (1) \to M (1)$. Let $M(1, 4)$ be the cofiber of this self-map. The purpose of this paper is to prove that $M(1, 4)$ admits a minimal $v_2$-self map of the form $v^{32}_2 : \Sigma^{192} M (1,4) \to M (1,4)$. The existence of this map implies the existence of many 192-periodic families of elements in the stable homotopy groups of spheres..

Citation

Download Citation

M. Behrens. M. Hill. M.J. Hopkins. M. Mahowald. "On the existence of a $v2^32$-self map on $M(1,4)$ at the prime 2." Homology Homotopy Appl. 10 (3) 45 - 84, 2008.

Information

Published: 2008
First available in Project Euclid: 1 September 2009

zbMATH: 1162.55010
MathSciNet: MR2475617

Subjects:
Primary: 55Q51
Secondary: 55Q40

Keywords: $v2$-periodicity , stable homotopy

Rights: Copyright © 2008 International Press of Boston

Vol.10 • No. 3 • 2008
Back to Top