Open Access
January 2007 Explicit estimates for summatory functions linked to the Möbius $\mu$-function
Henri Cohen, Francois Dress, Mahomed El Marraki
Funct. Approx. Comment. Math. 37(1): 51-63 (January 2007). DOI: 10.7169/facm/1229618741

Abstract

Let $M(x)$ be the summatory function of the Möbius function and $R(x)$ be the remainder term for the number of squarefree integers up to $x$. In this paper, we prove the explicit bounds $|M(x)|<x/4345$ for $x\ge 2160535$ and $|R(x)|\le 0.02767\sqrt x$ for $x\ge 438653$. These bounds are considerably better than preceding bounds of the same type and can be used to improve Schoenfeld type estimates.

Citation

Download Citation

Henri Cohen. Francois Dress. Mahomed El Marraki. "Explicit estimates for summatory functions linked to the Möbius $\mu$-function." Funct. Approx. Comment. Math. 37 (1) 51 - 63, January 2007. https://doi.org/10.7169/facm/1229618741

Information

Published: January 2007
First available in Project Euclid: 18 December 2008

zbMATH: 1230.11118
MathSciNet: MR2357309
Digital Object Identifier: 10.7169/facm/1229618741

Subjects:
Primary: 11N37
Secondary: 11Y35 , 11Y70

Keywords: Möbius function , summatory functions

Rights: Copyright © 2007 Adam Mickiewicz University

Vol.37 • No. 1 • January 2007
Back to Top