Open Access
January 2007 Sommes d'exponentielles friables d'arguments rationnels
Gérald Tenenbaum, Régis de la Bretèche
Funct. Approx. Comment. Math. 37(1): 31-38 (January 2007). DOI: 10.7169/facm/1229618739

Abstract

Let $\mathcal{M}$ denote the class of multiplicative functions with values in the unit disk, and, for $x\geq 1$, $y\geq 1$, let $S(x,y)$ designate the set of $y$-friable positive integers not exceeding $x$. We provide, as $x$ and $y$ tend to infinity in prescribed ranges, upper bounds for exponential sums of the form $$E_f(x,y;\vartheta):=\sum_{n\in S(x,y)}f(n)\hbox{\rm e}^{2\pi i n\vartheta}$$ whenever $f\in \mathcal{M}$ and $\vartheta$ is a rational number with denominator not exceeding a fixed power of $\log x$.

Citation

Download Citation

Gérald Tenenbaum. Régis de la Bretèche. "Sommes d'exponentielles friables d'arguments rationnels." Funct. Approx. Comment. Math. 37 (1) 31 - 38, January 2007. https://doi.org/10.7169/facm/1229618739

Information

Published: January 2007
First available in Project Euclid: 18 December 2008

zbMATH: 1230.11098
MathSciNet: MR2357307
Digital Object Identifier: 10.7169/facm/1229618739

Subjects:
Primary: 11L03
Secondary: 11L07 , 11N25 , 11N37

Keywords: exponential sums , exponential sums with multiplicative coefficients , friable integers

Rights: Copyright © 2007 Adam Mickiewicz University

Vol.37 • No. 1 • January 2007
Back to Top