Open Access
2006 Experimental Determination of Apéry-like Identities for $\zeta(2n+2)$
David H. Bailey, Jonathan M. Borwein, David M. Bradley
Experiment. Math. 15(3): 281-290 (2006).

Abstract

We document the discovery of two generating functions for $\zeta(2n+2)$, analogous to earlier work for $\zeta(2n+1)$ and $\zeta(4n+3)$, initiated by Koecher and pursued further by Borwein, Bradley, and others.

Citation

Download Citation

David H. Bailey. Jonathan M. Borwein. David M. Bradley. "Experimental Determination of Apéry-like Identities for $\zeta(2n+2)$." Experiment. Math. 15 (3) 281 - 290, 2006.

Information

Published: 2006
First available in Project Euclid: 5 April 2007

zbMATH: 1204.11136
MathSciNet: MR2264467

Subjects:
Primary: 11Y60
Secondary: 11M06

Keywords: central binomial coefficients , hypergeometric series , Riemann zeta function , series acceleration

Rights: Copyright © 2006 A K Peters, Ltd.

Vol.15 • No. 3 • 2006
Back to Top