Open Access
2005 On the Congruence $\boldsymbol{ax+by \equiv 1}$ Modulo $\boldsymbol{xy}$
J. Brzeziński, W. Holsztyński, P. Kurlberg
Experiment. Math. 14(4): 391-401 (2005).

Abstract

We give bounds on the number of solutions to the Diophantine equation $(X+1/x)(Y+1/y) = n$ as $n$}tends to infinity. These bounds are related to the number of solutions to congruences of the form $ax+by \equiv 1$ modulo $xy$.

Citation

Download Citation

J. Brzeziński. W. Holsztyński. P. Kurlberg. "On the Congruence $\boldsymbol{ax+by \equiv 1}$ Modulo $\boldsymbol{xy}$." Experiment. Math. 14 (4) 391 - 401, 2005.

Information

Published: 2005
First available in Project Euclid: 10 January 2006

zbMATH: 1152.11322
MathSciNet: MR2193402

Subjects:
Primary: 11D45
Secondary: 11A25 , 11D72

Keywords: Diophantine equation , divisor function , linear congruence

Rights: Copyright © 2005 A K Peters, Ltd.

Vol.14 • No. 4 • 2005
Back to Top