Electronic Journal of Statistics

Asymptotic properties of quasi-maximum likelihood estimators in observation-driven time series models

Randal Douc, Konstantinos Fokianos, and Eric Moulines

Full-text: Open access

Abstract

We study a general class of quasi-maximum likelihood estimators for observation-driven time series models. Our main focus is on models related to the exponential family of distributions like Poisson based models for count time series or duration models. However, the proposed approach is more general and covers a variety of time series models including the ordinary GARCH model which has been studied extensively in the literature. We provide general conditions under which quasi-maximum likelihood estimators can be analyzed for this class of time series models and we prove that these estimators are consistent and asymptotically normally distributed regardless of the true data generating process. We illustrate our results using classical examples of quasi-maximum likelihood estimation including standard GARCH models, duration models, Poisson type autoregressions and ARMA models with GARCH errors. Our contribution unifies the existing theory and gives conditions for proving consistency and asymptotic normality in a variety of situations.

Article information

Source
Electron. J. Statist. Volume 11, Number 2 (2017), 2707-2740.

Dates
Received: April 2016
First available in Project Euclid: 4 July 2017

Permanent link to this document
http://projecteuclid.org/euclid.ejs/1499133752

Digital Object Identifier
doi:10.1214/17-EJS1299

Subjects
Primary: 62M10: Time series, auto-correlation, regression, etc. [See also 91B84] 60J05: Discrete-time Markov processes on general state spaces
Secondary: 62M05: Markov processes: estimation

Keywords
Asymptotic normality consistency count time series duration models GARCH models Kullback-Leibler divergence maximum likelihood stationarity

Rights
Creative Commons Attribution 4.0 International License.

Citation

Douc, Randal; Fokianos, Konstantinos; Moulines, Eric. Asymptotic properties of quasi-maximum likelihood estimators in observation-driven time series models. Electron. J. Statist. 11 (2017), no. 2, 2707--2740. doi:10.1214/17-EJS1299. http://projecteuclid.org/euclid.ejs/1499133752.


Export citation

References

  • [1] Ahmad, A. and Franq, C. (2016). Poisson QMLE of count time series models., J. Time Ser. Anal., 291–314.
  • [2] Bardet, J.-M. and Wintenberger, O. (2010). Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes., Ann. Statist. 37, 2730–2759.
  • [3] Berkes, I. and Horváth, L. (2004). The efficiency of the estimators of the parameters in GARCH processes., Ann. Statist. 32, 633–655.
  • [4] Berkes, I., Horváth, L., and Kokoszka, P. (2003). GARCH processes: structure and estimation., Bernoulli 9, 201–227.
  • [5] Billingsley, P. (1961). The Lindeberg-Levy theorem for martingales., Proceedings of the American Mathematical Society 12, 5, 788–792.
  • [6] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity., J. Econometrics 31, 307–327.
  • [7] Bougerol, P. and Picard, N. (1992). Strict stationarity of generalized autoregressive processes., Ann. Prob. 20, 1714–1729.
  • [8] Christou, V. and Fokianos, K. (2014). Quasi–likelihood inference for negative binomial time series models., J. Time Ser. Anal. 35, 55–78.
  • [9] Cox, D. (1981). Statistical analysis of time-series: some recent developments., Scand. J. Statist. 8, 93–115.
  • [10] Davis, R., Dunsmuir, W., and Streett, S. (2003). Observation-driven models for Poisson counts., Biometrika 90, 777–790.
  • [11] Douc, R., Doukhan, P., and Moulines, E. (2013). Ergodicity of observation-driven time series models and consistency of the maximum likelihood estimator., Stochastic Process. Appl. 123, 2620–2647.
  • [12] Douc, R., Moulines, E., and Stoffer, D. (2014)., Nonlinear Time Series: Theory, Methods and Applications with R Examples. CRC Press.
  • [13] Engle, R. F. (2000). The econometrics of ultra-high-frequency data., Econometrica 68, 1–22.
  • [14] Engle, R. F. and Russell, J. R. (1998). Autoregressive conditional duration: a new model for irregularly spaced transaction data., Econometrica 66, 1127–1162.
  • [15] Fan, J., Qi, L., and Xiu, D. (2014). Quasi-Maximum likelihood estimation of GARCH models with heavy-tailed likelihoods., J. Bus. Econ. Statist. 32, 178–191. with discussion.
  • [16] Ferland, R., Latour, A., and Oraichi, D. (2006). Integer-valued GARCH process., J. Time Ser. Anal. 27, 923–942.
  • [17] Fokianos, K. (2012). Count time series models. In, Handbook of Statistics: Time Series Analysis–Methods and Applications, T. S. Rao, S. S. Rao, and C. R. Rao, Eds. Vol. 30. Elsevier B. V., Amsterdam, 315–347.
  • [18] Fokianos, K., Rahbek, A., and Tjøstheim, D. (2009). Poisson autoregression., J. Am. Statist. Assoc. 104, 1430–1439.
  • [19] Fokianos, K. and Tjøstheim, D. (2011). Log-linear poisson autoregression., J. of Multivariate Analysis 102, 563–578.
  • [20] Francq, C. and Zakoian, J.-M. (2004). Maximum likelihood estimation of pure garch and arma-garch processes., Bernoulli 10, 605–637.
  • [21] Francq, C. and Zakoïan, J.-M. (2010)., GARCH models: Structure, Statistical Inference and Financial Applications. Wiley, United Kingdom.
  • [22] Francq, C. and Zakoïan, J.-M. (2015). Risk-parameter estimation in volatility models., Journal of Econometrics 184, 158–173.
  • [23] Godambe, V. P. (1991)., Estimating Functions. Oxford Science Publications, Oxford.
  • [24] Hautsch, N. (2012). Univariate multiplicative error models. In, Econometrics of Financial High-Frequency Data. Springer Berlin Heidelberg, 99–142.
  • [25] Heyde, C. C. (1997)., Quasi-Likelihood and its Applications: A General Approach to Optimal Parameter Estimation. Springer, New York.
  • [26] Jensen, S. T. and Rahbek, A. (2004). Asymptotic normality of the QMLE estimator of ARCH in the nonstationary case., Econometrica 72, 641–646.
  • [27] Kauppi, H. and Saikkonen, P. (2008). Predicting US recessions with dynamic binary response models., The Review of Economics and Statistics 90, 777–791.
  • [28] Koopman, S. J. (1993). Disturbance smoother for state space models., Biometrika 80, 117–126.
  • [29] Lee, S. and Hansen, B. (1994). Asymptotic theory for the GARCH(1,1) quasi–maximum likelihood estimator., Econometric Theory 10, 29–52.
  • [30] McCullagh, P. and Nelder, J. A. (1989)., Generalized Linear Models, 2nd ed. Chapman & Hall, London.
  • [31] Meitz, M. and Saikkonen, P. (2008). Ergodicity, mixing, and existence of moments of a class of Markov models with application to GARCH and ACD models., Econometric Theory 24, 1291–1320.
  • [32] Meitz, M. and Saikkonen, P. (2011). Parameter estimation in nonlinear AR GARCH models., Econometric Theory 27, 1236–1278.
  • [33] Mikosch, T. and Straumann, D. (2006). Stable limits of martingale transforms with application to the estimation of GARCH parameters., Ann. Statist. 34, 493–522.
  • [34] Moysiadis, T. and Fokianos, K. (2014). On binary and categorical time series models with feedback., Journal of Multivariate Analysis 131, 209–228.
  • [35] Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized linear models., Journal of the Royal Statistical Society, Series A 135, 370– 384.
  • [36] Nelson, D. (1991). Conditional heteroskedasticity in asset returns: a new approach., Econometrica 59, 347–370.
  • [37] Pfanzagl, J. (1969). On the measurability and consistency of minimum contrast estimates., Metrika 14, 249–272.
  • [38] Russell, J. R. and Engle, R. F. (2005). A discrete-state continuous-time model of financial transactions prices and times., Journal of Business and Economic Statistics 23, 166–180.
  • [39] Rydberg, T. H. and Shephard, N. (2003). Dynamics of trade-by-trade price movements: decomposition and models., Journal of Financial Econometrics 1, 2–25.
  • [40] Streett, S. (2000). Some observation driven models for time series of counts. Ph.D. thesis, Colorado State University, Department of, Statistics.
  • [41] Teräsvirta, T. (1994). Specification, estimation, and evaluation of smooth transition autoregressive models., Journal of the American Statistical Association 89, 208–218.
  • [42] Teräsvirta, T., Tjøstheim, D., and Granger, C. W. J. (2010)., Modelling Nonlinear Economic Time Series. Oxford University Press, Oxford.
  • [43] Wedderburn, R. W. M. (1974). Quasi–likelihood functions, generalized linear models and the Gaussian method., Biometrika 61, 439–447.
  • [44] West, M. and Harrison, J. (1989)., Bayesian Forecasting and Dynamic Models. Springer.
  • [45] White, H. (1982). Maximum likelihood estimation of misspecified models., Econometrica 50, 1–25.
  • [46] Zeger, S. L. (1988). A regression model for time series of counts., Biometrika 75, 621.
  • [47] Zeger, S. L. and Liang, K.-Y. (1986). Longitudinal data analysis for discrete and continuous outcomes., Biometrics 42, 121–130.
  • [48] Zeger, S. L. and Qaqish, B. (1988). Markov regression models for time series: a quasi-likelihood approach., Biometrics 44, 1019–1031.