Abstract
We study Bayes procedures for nonparametric regression problems with Gaussian errors, giving conditions under which a Bernstein–von Mises result holds for the marginal posterior distribution of the error standard deviation. We apply our general results to show that a single Bayes procedure using a hierarchical spline-based prior on the regression function and an independent prior on the error variance, can simultaneously achieve adaptive, rate-optimal estimation of a smooth, multivariate regression function and efficient, $\sqrt{n}$-consistent estimation of the error standard deviation.
Citation
René de Jonge. Harry van Zanten. "Semiparametric Bernstein–von Mises for the error standard deviation." Electron. J. Statist. 7 217 - 243, 2013. https://doi.org/10.1214/13-EJS768
Information