Electronic Journal of Statistics

Approximation of rejective sampling inclusion probabilities and application to high order correlations

Helène Boistard, Hendrik P. Lopuhaä, and Anne Ruiz-Gazen

Full-text: Open access

Abstract

This paper is devoted to rejective sampling. We provide an expansion of joint inclusion probabilities of any order in terms of the inclusion probabilities of order one, extending previous results by Hájek (1964) and Hájek (1981) and making the remainder term more precise. Following Hájek (1981), the proof is based on Edgeworth expansions. The main result is applied to derive bounds on higher order correlations, which are needed for the consistency and asymptotic normality of several complex estimators.

Article information

Source
Electron. J. Statist. Volume 6 (2012), 1967-1983.

Dates
First available in Project Euclid: 30 October 2012

Permanent link to this document
http://projecteuclid.org/euclid.ejs/1351603385

Digital Object Identifier
doi:10.1214/12-EJS736

Mathematical Reviews number (MathSciNet)
MR3020253

Zentralblatt MATH identifier
06167020

Subjects
Primary: 62D05: Sampling theory, sample surveys
Secondary: 60E10: Characteristic functions; other transforms

Keywords
Rejective Sampling Poisson sampling Edgeworth expansions maximal entropy Hermite polynomials

Citation

Boistard, Helène; Lopuhaä, Hendrik P.; Ruiz-Gazen, Anne. Approximation of rejective sampling inclusion probabilities and application to high order correlations. Electron. J. Statist. 6 (2012), 1967--1983. doi:10.1214/12-EJS736. http://projecteuclid.org/euclid.ejs/1351603385.


Export citation

References

  • Arratia, R., Goldstein, L. and Langholz, B. (2005). Local central limit theorems, the high-order correlations of rejective sampling and logistic likelihood asymptotics., Ann. Statist. 33 871–914.
  • Blinnikov, S. and Moessner, R. (1998). Expansions for nearly Gaussian distributions., Astron. Astrophys. Suppl. Ser. 130 193-205.
  • Breidt, F. J. and Opsomer, J. D. (2000). Local polynomial regresssion estimators in survey sampling., Ann. Statist. 28 1026–1053.
  • Breidt, F. J., Opsomer, J. D., Johnson, A. A. and Ranalli, M. G. (2007). Semiparametric model-assisted estimation for natural resource surveys., Survey Methodology 33 35.
  • Brewer, K. R. W. and Hanif, M. (1983)., Sampling with unequal probabilities. Lecture Notes in Statistics 15. Springer-Verlag, New York.
  • Cardot, H., Chaouch, M., Goga, C. and Labruère, C. (2010). Properties of design-based functional principal components analysis., J. Statist. Plann. Inference 140 75–91.
  • Chen, S. X. (2000). General properties and estimation of conditional Bernoulli models., J. Multivariate Anal. 74 69–87.
  • Chen, X.-H., Dempster, A. P. and Liu, J. S. (1994). Weighted finite population sampling to maximize entropy., Biometrika 81 457–469.
  • Deville, J.-C. (2000). Note sur l’algorithme de Chen, Dempster et Liu Technical Report No. France, CREST-ENSAI.
  • Hájek, J. (1964). Asymptotic theory of rejective sampling with varying probabilities from a finite population., Ann. Math. Statist. 35 1491–1523.
  • Hájek, J. (1981)., Sampling from a finite population. Statistics: Textbooks and Monographs 37. Marcel Dekker Inc., New York. Edited by Václav Dupač, With a foreword by P. K. Sen.
  • Khatri, C. G. (1959). On certain properties of power-series distributions., Biometrika 46 486–490.
  • Matei, A. and Tillé, Y. (2005). Evaluation of variance approximations and estimators in maximum entropy sampling with unequal probability and fixed sample size., J. Official Statistics 21 543–570.
  • Qualité, L. (2008). A comparison of conditional Poisson sampling versus unequal probability sampling with replacement., J. Statist. Plann. Inference 138 1428–1432.
  • Wang, L. (2009). Single-index model-assisted estimation in survey sampling., J. Nonparametr. Stat. 21 487–504.