Open Access
2011 A local maximal inequality under uniform entropy
Aad van der Vaart, Jon A. Wellner
Electron. J. Statist. 5: 192-203 (2011). DOI: 10.1214/11-EJS605

Abstract

We derive an upper bound for the mean of the supremum of the empirical process indexed by a class of functions that are known to have variance bounded by a small constant δ. The bound is expressed in the uniform entropy integral of the class at δ. The bound yields a rate of convergence of minimum contrast estimators when applied to the modulus of continuity of the contrast functions.

Citation

Download Citation

Aad van der Vaart. Jon A. Wellner. "A local maximal inequality under uniform entropy." Electron. J. Statist. 5 192 - 203, 2011. https://doi.org/10.1214/11-EJS605

Information

Published: 2011
First available in Project Euclid: 14 April 2011

zbMATH: 1268.60027
MathSciNet: MR2792551
Digital Object Identifier: 10.1214/11-EJS605

Subjects:
Primary: 60K35

Keywords: empirical process , minimum contrast estimator , modulus of continuity , rate of convergence

Rights: Copyright © 2011 The Institute of Mathematical Statistics and the Bernoulli Society

Back to Top