Abstract
We consider a branching population where individuals live and reproduce independently. Their lifetimes are i.i.d. and they give birth at a constant rate $b$. The genealogical tree spanned by this process is called a splitting tree, and the population counting process is a homogeneous, binary Crump-Mode-Jagers process. We suppose that mutations affect individuals independently at a constant rate $\theta $ during their lifetimes, under the infinite-alleles assumption: each new mutation gives a new type, called allele, to his carrier. We study the allele frequency spectrum which is the numbers $A(k,t)$ of types represented by $k$ alive individuals in the population at time $t$. Thanks to a new construction of the coalescent point process describing the genealogy of individuals in the splitting tree, we are able to compute recursively all joint factorial moments of $\left (A(k,t)\right )_{k\geq 1}$. These moments allow us to give an elementary proof of the almost sure convergence of the frequency spectrum in a supercritical splitting tree.
Citation
Nicolas Champagnat. Benoît Henry. "Moments of the frequency spectrum of a splitting tree with neutral Poissonian mutations." Electron. J. Probab. 21 1 - 34, 2016. https://doi.org/10.1214/16-EJP4577
Information