Abstract
In this short note, we consider a system of two rotors, one of which interacts with a Langevin heat bath. We show that the system relaxes to its invariant measure (steady state) no faster than a stretched exponential $\exp (-c t^{1/2})$. This indicates that the exponent $1/2$ obtained earlier by the present authors and J.-P. Eckmann for short chains of rotors is optimal.
Citation
Noé Cuneo. Christophe Poquet. "On the relaxation rate of short chains of rotors interacting with Langevin thermostats." Electron. Commun. Probab. 22 1 - 8, 2017. https://doi.org/10.1214/17-ECP62
Information