Electronic Communications in Probability

Random Strict Partitions and Determinantal Point Processes

Leonid Petrov

Full-text: Open access

Abstract

We present new examples of determinantal point processes with infinitely many particles. The particles live on the half-lattice $\{1,2,\dots\}$ or on the open half-line $ in connection with the problem of harmonic analysis for projective characters of the infinite symmetric group.

Article information

Source
Electron. Commun. Probab. Volume 15 (2010), paper no. 16, 162-175.

Dates
Accepted: 19 May 2010
First available in Project Euclid: 6 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1465243959

Digital Object Identifier
doi:10.1214/ECP.v15-1542

Mathematical Reviews number (MathSciNet)
MR2651548

Zentralblatt MATH identifier
1226.60072

Subjects
Primary: 60G55: Point processes
Secondary: 20C25: Projective representations and multipliers

Keywords
random strict partitions determinantal point process Macdonald kernel

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

Petrov, Leonid. Random Strict Partitions and Determinantal Point Processes. Electron. Commun. Probab. 15 (2010), paper no. 16, 162--175. doi:10.1214/ECP.v15-1542. https://projecteuclid.org/euclid.ecp/1465243959.


Export citation

References

  • Baik, Jihno; Deift, Percy; Johansson, Kurt. On the distribution of the length of the second row of a Young diagram under Plancherel measure. Geom. Funct. Anal. 10 (2000), no. 4, 702-731.
  • Borodin, Alexei. Multiplicative central measures on the Schur graph. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 240 (1997), Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 2, 44-52, 290-291; translation in J. Math. Sci. (New York) 96 (1999), no. 5, 3472-3477
  • Borodin, Alexei. Riemann-Hilbert problem and the discrete Bessel kernel. Internat. Math. Res. Notices 2000, no. 9, 467-494.
  • Borodin, Alexei. Determinantal point processes (2009). arXiv preprint, arXiv:0911.1153v1 [math.PR].
  • Borodin, Alexei; Okounkov, Andrei; Olshanski, Grigori. Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc. 13 (2000), no. 3, 481-515 (electronic).
  • Borodin, Alexei; Olshanski, Grigori. Point processes and the infinite symmetric group. Math. Res. Lett. 5 (1998), no. 6, 799-816.
  • Borodin, Alexei; Olshanski, Grigori. Distributions on partitions, point processes, and the hypergeometric kernel. Comm. Math. Phys. 211 (2000), no. 2, 335-358.
  • Borodin, Alexei; Olshanski, Grigori. Random partitions and the gamma kernel. Adv. Math. 194 (2005), no. 1, 141-202.
  • Borodin, Alexei; Olshanski, Grigori. Markov processes on partitions. Probab. Theory Related Fields 135 (2006), no. 1, 84-152.
  • Borodin, Alexei; Olshanski, Grigori. Infinite-dimensional diffusions as limits of random walks on partitions. Probab. Theory Related Fields 144 (2009), no. 1-2, 281-318.
  • Deift, Percy. Integrable operators. Differential operators and spectral theory, 69-84, Amer. Math. Soc. Transl. Ser. 2, 189, Amer. Math. Soc., Providence, RI, 1999.
  • Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G., editors. Higher transcendental functions. McGraw–Hill, New York, 1953-1955.
  • Forrester, Peter J. Log-gases and random matrices. Book in progress, http://www.ms.unimelb.edu.au/~matpjf/matpjf.html.
  • Hoffman, P. N.; Humphreys, J. F. Projective representations of the symmetric groups. Q-functions and shifted tableaux. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1992. xiv+304 pp. ISBN: 0-19-853556-2
  • Hough, J. Ben; Krishnapur, Manjunath; Peres, Yuval; Virág, Bálint. Determinantal processes and independence. Probab. Surv. 3 (2006), 206-229 (electronic).
  • Its, A. R.; Izergin, A. G.; Korepin, V. E.; Slavnov, N. A. Differential equations for quantum correlation functions. Proceedings of the Conference on Yang-Baxter Equations, Conformal Invariance and Integrability in Statistical Mechanics and Field Theory. Internat. J. Modern Phys. B 4 (1990), no. 5, 1003-1037.
  • Ivanov, Vladimir. The dimension of skew shifted Young diagrams, and projective characters of the infinite symmetric group. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 240 (1997), Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 2, 115-135, 292-293; translation in J. Math. Sci. (New York) 96 (1999), no. 5, 3517-3530
  • Ivanov, Vladimir. Plancherel measure on shifted Young diagrams. Representation theory, dynamical systems, and asymptotic combinatorics, 73-86, Amer. Math. Soc. Transl. Ser. 2, 217, Amer. Math. Soc., Providence, RI, 2006.
  • Johansson, Kurt. Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. of Math. (2) 153 (2001), no. 1, 259-296.
  • Kerov, Sergei; Olshanski, Grigori; Vershik, Anatoli. Harmonic analysis on the infinite symmetric group. A deformation of the regular representation. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 8, 773-778.
  • Kerov, Sergei; Olshanski, Grigori; Vershik, Anatoli. Harmonic analysis on the infinite symmetric group. Invent. Math. 158 (2004), no. 3, 551-642.
  • Lisovyy, Oleg. Dyson's constant for the hypergeometric kernel (2009). arXiv preprint, arXiv:0910.1914v2 [math-ph].
  • Macdonald, I. G. Symmetric functions and Hall polynomials. Second edition. With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp. ISBN: 0-19-853489-2
  • Matsumoto, Sho. Correlation functions of the shifted Schur measure. J. Math. Soc. Japan 57 (2005), no. 3, 619-637.
  • Nazarov, M. L. Projective representations of the infinite symmetric group. Representation theory and dynamical systems, 115-130, Adv. Soviet Math., 9, Amer. Math. Soc., Providence, RI, 1992.
  • Okounkov, Andrei. SL(2) and z-measures. Random matrix models and their applications, 407-420, Math. Sci. Res. Inst. Publ., 40, Cambridge Univ. Press, Cambridge, 2001.
  • Okounkov, Andrei. Infinite wedge and random partitions. Selecta Math. (N.S.) 7 (2001), no. 1, 57-81.
  • Okounkov, Andrei. Symmetric functions and random partitions, in: Symmetric functions 2001: Surveys of Developments and Perspectives. Proceedings of the NATO Advanced Study Institute held in Cambridge, June 25-July 6, 2001. Edited by Sergey Fomin. NATO Science Series II: Mathematics, Physics and Chemistry, 74. Kluwer Academic Publishers, Dordrecht, 2002. xiv+273 pp. ISBN: 1-4020-0773-6
  • Olshanski, Grigori. Point processes and the infinite symmetric group. Part V: Analysis of the matrix Whittaker kernel (1998). arXiv preprint.v1 [math.RT].
  • Olshanski, Grigori. The quasi-invariance property for the Gamma kernel determinantal measure (2009). arXiv preprint, arXiv:0910.0130v2 [math.PR].
  • Petrov, Leonid. Random walks on strict partitions. Zap. Nauchn. Sem. POMI, 373 (2009), 226-272 (in Russian). arXiv preprint (in English), arXiv:0904.1823v1 [math.PR].
  • Rains, Eric M. Correlation functions for symmetrized increasing subsequences (2000). arXiv preprint.v1 [math.CO].
  • Schur, I. Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrocheme lineare Substitionen. J. Reine Angew. Math. 139 (1911), 155-250.