Electronic Communications in Probability

The size of a pond in 2D invasion percolation

Jacob van den Berg, Antal Jarai, and Balint Vagvolgyi

Full-text: Open access

Abstract

We consider invasion percolation on the square lattice. van den Berg, Peres, Sidoravicius and Vares have proved that the probability that the radius of a so-called pond is larger than $n$, differs at most a factor of order log $n$ from the probability that in critical Bernoulli percolation the radius of an open cluster is larger than $n$. We show that these two probabilities are, in fact, of the same order. Moreover, we prove an analogous result for the volume of a pond.

Article information

Source
Electron. Commun. Probab. Volume 12 (2007), paper no. 39, 411-420.

Dates
Accepted: 26 October 2007
First available in Project Euclid: 6 June 2016

Permanent link to this document
http://projecteuclid.org/euclid.ecp/1465224982

Digital Object Identifier
doi:10.1214/ECP.v12-1327

Mathematical Reviews number (MathSciNet)
MR2350578

Zentralblatt MATH identifier
1128.60087

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 82B43: Percolation [See also 60K35]

Keywords
invasion percolation pond critical percolation

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

van den Berg, Jacob; Jarai, Antal; Vagvolgyi, Balint. The size of a pond in 2D invasion percolation. Electron. Commun. Probab. 12 (2007), paper no. 39, 411--420. doi:10.1214/ECP.v12-1327. http://projecteuclid.org/euclid.ecp/1465224982.


Export citation

References

  • O. Angel, J. Goodman, F. den Hollander and G. Slade. Invasion percolation on regular\n trees. Preprint (2006). arXiv:math/0608132v1
  • J. van den Berg and H. Kesten. Inequalities with application to percolation and\n reliability. J. Appl. Prob. 22 (1985), 556-569.
  • J. van den Berg, Y. Peres, V. Sidoravicius and M.E. Vares. Random spatial growth with\n paralyzing obstacles. Preprint (2007). arXiv:0706.0219
  • J.T. Chayes, L. Chayes and C.M. Newman. Stochastic geometry of invasion percolation.\n Commun. Math. Phys. 101 (1985), 383-407.
  • J.T. Chayes, L. Chayes and C.M. Newman. Bernoulli percolation above threshold: An\n invasion percolation analysis. Ann. Probab. 15 (1987), 1272-1287.
  • G.R. Grimmett. Percolation. Second edition. Grundlehren der Mathematischen\n Wissenschaften 321 (1999), Springer-Verlag, Berlin.
  • A.A. Járai. Invasion percolation and the incipient infinite cluster in 2D. Commun.\n Math. Phys. 236 (2003), 311-314.
  • H. Kesten. The incipient infinite cluster in two-dimensional percolation. Probab.\n Theory Related Fields 73 (1986), 369-394.
  • H. Kesten. Scaling relations for 2D percolation. Commun. Math. Phys. 109 (1987),\n 109-156.
  • R. Lyons, Y. Peres and O. Schramm. Minimal spanning forests. Ann. Probab. 34 (2006),\n 1665-1692.
  • B.G. Nguyen. Typical cluster size for two-dimensional percolation processes. J. Stat.\n Phys. 50 (1987), 715-726.
  • G.F. Lawler, O. Schramm and W. Werner. One-arm exponent for critical 2D percolation.\n Electron. J. Probab. 2 (2002), 13 pp., electronic.
  • D.L. Stein and C.M. Newman. Broken ergodicity and the geometry of rugged landscapes.\n Phys. Rev. E 51 (1995), 5228-5238.
  • D. Wilkinson and J.F. Willemsen. Invasion percolation: A new form of percolation\n theory. J. Phys. A. 16 (1983), 3365-3376.