Duke Mathematical Journal

Monopole Floer homology for rational homology 3-spheres

Kim A. Frøyshov

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We give a new construction of monopole Floer homology for $\text{spin}^c$ rational homology $3$-spheres. As applications, we define two invariants of certain $4$-manifolds with $b_1=1$ and $b^+=0$.

Article information

Duke Math. J. Volume 155, Number 3 (2010), 519-576.

First available in Project Euclid: 16 November 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Primary: 57R58: Floer homology
Secondary: 57R57: Applications of global analysis to structures on manifolds, Donaldson and Seiberg-Witten invariants [See also 58-XX]


Frøyshov, Kim A. Monopole Floer homology for rational homology 3-spheres. Duke Math. J. 155 (2010), no. 3, 519--576. doi:10.1215/00127094-2010-060. http://projecteuclid.org/euclid.dmj/1289916772.

Export citation


  • D. M. Austin and P. J. Braam, ``Morse-Bott theory and equivariant cohomology'' in The Floer Memorial Volume, Progr. Math. 133, Birkhäuser, Basel, 1995, 123--183.
  • A. Banyaga and D. Hurtubise, Lectures on Morse Homology, Kluwer Texts Math. Sci. 29, Kluwer Acad. Publ., Dordrecht, 2004.
  • Ch. Bär, Harmonic spinors for twisted Dirac operators, Math. Ann. 309 (1997), 225--246.
  • S. K. Donaldson, Floer Homology Groups in Yang-Mills Theory, Cambridge Tracts in Math. 147, Cambridge Univ. Press, Cambridge, 2002.
  • N. D. Elkies, A characterization of the $\z^n$ lattice, Math. Res. Lett. 2 (1995), 321--326.
  • A. Floer, An instanton-invariant for 3-manifolds, Comm. Math. Phys. 118 (1988), 215--240.
  • K. A. Frøyshov, The Seiberg-Witten equations and four-manifolds with boundary, Math. Res. Lett. 3 (1996), 373--390.
  • —, Equivariant aspects of Yang-Mills Floer theory, Topology 41 (2002), 525--552.
  • —, Compactness and Gluing Theory for Monopoles, Geom. Topol. Monogr. 15, Geom. Topol. Publ., Coventry, 2008.
  • M. Furuta and H. Ohta, Differentiable structures on punctured $4$-manifolds, Topology Appl. 51 (1993), 291--301.
  • N. Hitchin, Harmonic spinors, Adv. Math. 14 (1974), 1--55.
  • J. Kazdan, Unique continuation in geometry, Comm. Pure Appl. Math. 41 (1988), 667--681.
  • P. Kronheimer and T. Mrowka, Monopoles and Three-Manifolds, New Math. Monogr. 10, Cambridge Univ. Press, Cambridge, 2007.
  • Y. Lim, The equivalence of Seiberg-Witten and Casson invariants for homology $3$-spheres, Math. Res. Lett. 6 (1999), 631--643.
  • M. Marcolli and B.-L. Wang, Equivariant Seiberg-Witten Floer homology, Comm. Anal. Geom. 9 (2001), 451--639.
  • Ch. Okonek and A. Teleman, ``Seiberg-Witten invariants for $4$-manifolds with $b_+=0$'' in Complex Analysis and Algebraic Geometry, Walter de Gruyter, Berlin, 2000, 347--357.
  • P. Ozsváth and Z. Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), 179--261.
  • —, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), 1027--1158.
  • J. Robbin and D. Salamon, The spectral flow and the Maslov index, Bull. Lond. Math. Soc. 27 (1995), 1--33.
  • D. Ruberman and N. Saveliev, Rohlin's invariant and gauge theory, II: Mapping tori, Geom. Topol. 8 (2004), 35--76.
  • A. Teleman, Donaldson theory on non-Kählerian surfaces and class VII surfaces with $b_2=1$, Invent. Math. 162 (2005), 493--521.