Duke Mathematical Journal

Spectral asymptotics via the semiclassical Birkhoff normal form

Laurent Charles and San Vũ Ngọc

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

This article gives a simple treatment of the quantum Birkhoff normal form for semiclassical pseudodifferential operators with smooth coefficients. The normal form is applied to describe the discrete spectrum in a generalised nondegenerate potential well, yielding uniform estimates in the energy $E$. This permits a detailed study of the spectrum in various asymptotic regions of the parameters $(E,\hstrok)$ and gives improvements and new proofs for many of the results in the field. In the completely resonant case, we show that the pseudodifferential operator can be reduced to a Toeplitz operator on a reduced symplectic orbifold. Using this quantum reduction, new spectral asymptotics concerning the fine structure of eigenvalue clusters are proved. In the case of polynomial differential operators, a combinatorial trace formula is obtained

Article information

Source
Duke Math. J. Volume 143, Number 3 (2008), 463-511.

Dates
First available: 3 June 2008

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1212500464

Digital Object Identifier
doi:10.1215/00127094-2008-026

Mathematical Reviews number (MathSciNet)
MR2423760

Zentralblatt MATH identifier
1154.58015

Subjects
Primary: 58J50: Spectral problems; spectral geometry; scattering theory [See also 35Pxx]
Secondary: 58J40: Pseudodifferential and Fourier integral operators on manifolds [See also 35Sxx] 58K50: Normal forms 47B35: Toeplitz operators, Hankel operators, Wiener-Hopf operators [See also 45P05, 47G10 for other integral operators; see also 32A25, 32M15] 53D20: Momentum maps; symplectic reduction 81S10: Geometry and quantization, symplectic methods [See also 53D50]

Citation

Charles, Laurent; Vũ Ngọc, San. Spectral asymptotics via the semiclassical Birkhoff normal form. Duke Mathematical Journal 143 (2008), no. 3, 463--511. doi:10.1215/00127094-2008-026. http://projecteuclid.org/euclid.dmj/1212500464.


Export citation

References

  • M. K. Ali, The quantum normal form and its equivalents, J. Math. Phys. 26 (1985), 2565--2572.
  • D. Bambusi, ``Semiclassical normal forms'' in Multiscale Methods in Quantum Mechanics, Trends Math., Birkhäuser, Boston, 2004, 23--39.
  • D. Bambusi, S. Graffi, and T. Paul, Normal forms and quantization formulae, Comm. Math. Phys. 207 (1999), 173--195.
  • V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math. 14 (1961), 187--214.
  • G. D. Birkhoff, Dynamical Systems, reprint of the 1927 ed., Amer. Math. Soc. Colloq. Publ. 9, Amer. Math. Soc., Providence, 1966.
  • L. Boutet De Monvel and V. Guillemin, The Spectral Theory of, Toeplitz Operators, Ann. of Math. Stud. 99, Princeton Univ. Press, Princeton, 1981.
  • L. Charles, Berezin-Toeplitz operators, a semi-classical approach, Comm. Math. Phys. 239 (2003), 1--28.
  • —, Toeplitz operators and Hamiltonian torus actions, J. Funct. Anal. 236 (2006), 299--350.
  • Y. Colin De VerdièRe, Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Comment. Math. Helv. 54 (1979), 508--522.
  • —, thodes semi-classiques et théorie spectrale, in preparation.
  • Y. Colin De VerdièRe and S. Vũ ng\d oc, Singular Bohr-Sommerfeld rules for $2$D integrable systems, Ann. Sci. École Norm. Sup. (4) 36 (2003), 1--55.
  • M. Dimassi and J. SjöStrand, Spectral Asymptotics in the Semi-Classical Limit, London Math. Soc. Lecture Note Ser. 268, Cambridge Univ. Press, Cambridge, 1999.
  • S. Dozias, Clustering for the spectrum of $h$-pseudodifferential operators with periodic flow on an energy surface, J. Funct. Anal. 145 (1997), 296--311.
  • B. Eckhardt, Birkhoff-Gustavson normal form in classical and quantum mechanics, J. Phys. A 19 (1986), 2961--2972.
  • B. Fedosov, Deformation Quantization and Index Theory, Math. Topics 9, Akademie, Berlin, 1996.
  • V. Guillemin, Some spectral results for the Laplace operator with potential on the n-sphere, Adv. in Math. 27 (1978), 273--286.
  • —, Moment Maps and Combinatorial Invariants of Hamiltonian $T^n$-Spaces, Progr. Math. 122, Birkhäuser, Boston, 1994.
  • —, Wave-trace invariants, Duke Math. J. 83 (1996), 287--352.
  • F. G. Gustavson, On constructing formal integrals of a Hamiltonian system near an equilibrium point, Astronom. J. 71 (1966), 670--686.
  • B. Helffer and D. Robert, Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles, J. Funct. Anal. 53 (1983), 246--268.
  • —, Puits de potentiel généralisés et asymptotique semi-classique, Ann. Inst. H. Poincaré Phys. Théor. 41 (1984), 291--331.
  • B. Helffer and J. SjöStrand, Multiple wells in the semiclassical limit, I, Comm. Partial Differential Equations 9 (1984), 337--408.
  • M. Joyeux, Gustavson's procedure and the dynamics of highly excited vibrational states, J. Chem. Phys. 109 (1998), 2111--2122.
  • E. Meinrenken, On Riemann-Roch formulas for multiplicities, J. Amer. Math. Soc. 9 (1996), 373--389.
  • J. Moser, New aspects in the theory of stability of Hamiltonian systems, Comm. Pure Appl. Math. 11 (1958), 81--114.
  • V. Petkov and G. Popov, Semi-classical trace formula and clustering of eigenvalues for Schrödinger operators, Ann. Inst. H. Poincaré Phys. Théor. 68 (1998), 17--83.
  • D. Robert, Autour de l'approximation semi-classique, Progr. Math. 68, Birkhäuser, Boston, 1987.
  • J. Robert and M. Joyeux, Canonical perturbation theory versus Born-Oppenheimer-type separation of motions: The vibrational dynamics of C$_3$, J. Chem. Phys. 119 (2003), 8761--8762.
  • D. A. Sadovskií and B. Zhilinskií, Counting levels within vibrational polyads: Generating function approach, J. Chem. Phys. 103 (1995), 10520--10536.
  • B. Simon, Semiclassical analysis of low lying eigenvalues, I, Ann. Inst. H. Poincaré Sect. A (N.S.) 38 (1983), 295--307.; Errata, Ann. Inst. H. Poincaré Phys. Théor. 40 (1984), 224. $\!$;
  • J. SjöStrand, Semi-excited states in nondegenerate potential wells, Asymptotic Anal. 6 (1992), 29--43.
  • R. T. Swimm and J. B. Delos, Semiclassical calculations of vibrational energy levels for nonseparable systems using the Birkhoff-Gustavson normal form, J. Chem. Phys. 71 (1979), 1706--1717.
  • S. Vũ ng\d oc, Sur le spectre des systèmes complètement intégrables semi-classiques avec singularités, Ph.D. dissertation, Université Grenoble 1, Grenoble, 1998.
  • A. Weinstein, Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J. 44 (1977), 883--892.
  • S. Zelditch, The inverse spectral problem for surfaces of revolution, J. Differential Geom. 49 (1998), 207--264.