Duke Mathematical Journal

Rosenthal's theorem for subspaces of noncommutative $L_p$

Marius Junge and Javier Parcet

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We show that a reflexive subspace of the predual of a von Neumann algebra embeds into a noncommutative $L_p$-space for some $p>1$. This is a noncommutative version of Rosenthal's result for commutative $L_p$-spaces. Similarly for $1 \le q \lt 2$, an infinite-dimensional subspace $X$ of a noncommutative $L_q$-space either contains $\ell_q$ or embeds in $L_p$ for some $q \lt p \lt 2$. The novelty in the noncommutative setting is a double-sided change of density

Article information

Duke Math. J. Volume 141, Number 1 (2008), 75-122.

First available in Project Euclid: 4 December 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 46L53: Noncommutative probability and statistics
Secondary: 46B25: Classical Banach spaces in the general theory


Junge, Marius; Parcet, Javier. Rosenthal's theorem for subspaces of noncommutative L p . Duke Math. J. 141 (2008), no. 1, 75--122. doi:10.1215/S0012-7094-08-14112-2. http://projecteuclid.org/euclid.dmj/1196794291.

Export citation


  • D. J. Aldous, Subspaces of $L\sp1$, via random measures, Trans. Amer. Math. Soc. 267 (1981), 445--463.
  • H. Araki, On an inequality of Lieb and Thirring, Lett. Math. Phys. 19 (1990), 167--170.
  • J. Bergh and J. LöFströM, Interpolation Spaces: An Introduction, Grundlehren Math. Wiss. 223, Springer, Berlin, 1976.
  • E. Berkson, T. A. Gillespie, and P. S. Muhly, Abstract spectral decompositions guaranteed by the Hilbert transform, Proc. London Math. Soc. (3) 53 (1986), 489--517.
  • J. Bourgain, ``Vector-valued singular integrals and the $H\sp 1$-BMO duality'' in Probability Theory and Harmonic Analysis (Cleveland, Ohio, 1983), Monogr. Textbooks Pure Appl. Math. 98, Dekker, New York, 1986, 1--19.
  • B. Erdogan, personal communication, 2006.
  • T. Fack, Type and cotype inequalities for noncommutative $L\sp p$-spaces, J. Operator Theory 17 (1987), 255--279.
  • T. Fack and H. Kosaki, Generalized $s$-numbers of $\tau$-measurable operators, Pacific J. Math. 123 (1986), 269--300.
  • I. C. Gohberg and M. G. KreĭN, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monogr. 18, Amer. Math. Soc., Providence, 1969.
  • U. Haagerup, ``$L\spp$-spaces associated with an arbitrary von Neumann algebra'' in Algèbres d'opérateurs et leurs applications en physique mathématique (Marseille, 1977), Colloq. Internat. CNRS 274, CNRS, Paris, 1979, 175--184.
  • U. Haagerup, M. Junge, and Q. Xu, Reduction for noncommutative $L_p$-spaces and applications, in preparation.
  • M. Hilsum, Les espaces $L\spp$ d'une algèbre de von Neumann définies par la derivée spatiale, J. Funct. Anal. 40 (1981), 151--169.
  • M. Junge, Doob's inequality for non-commutative martingales, J. Reine Angew. Math. 549 (2002), 149--190.
  • —, Fubini's theorem for ultraproducts of noncommutative $L\sb p$-spaces, Canad. J. Math. 56 (2004), 983--1021.
  • M. Junge, C. Le Merdy, and Q. Xu, Calcul fonctionnel et fonctions carrées dans les espaces $L\sp p$ non commutatifs, C. R. Math. Acad. Sci. Paris 337 (2003), 93--98.
  • M. Junge and J. Parcet, Mixed-norm inequalities and operator space $L_p$ embedding theory, preprint, 2007.
  • M. Junge and H. Rosenthal, Noncommutative $L_p$ spaces are asymptotially stable, in preparation.
  • M. Junge and Q. Xu, Noncommutative Burkholder/Rosenthal inequalities, Ann. Probab. 31 (2003), 948--995.
  • —, Noncommutative maximal ergodic theorems, J. Amer. Math. Soc. 20 (2007), 385--439.
  • V. Kaftal, D. Larson, and G. Weiss, Quasitriangular subalgebras of semifinite von Neumann algebras are closed, J. Funct. Anal. 107 (1992), 387--401.
  • M. I. Kadec and A. PełCzyńSki, Bases, lacunary sequences and complemented subspaces in the spaces $L\sbp$, Studia Math. 21 (1961/1962), 161--176.
  • R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. 1: Elementary Theory, reprint of the 1983 original, Grad. Stud. Math. 15, Amer. Math. Soc., Providence, 1997.
  • —, Fundamentals of the Theory of Operator Algebras, Vol. 2: Advanced Theory, corrected reprint of the 1986 original, Grad. Stud. Math. 16, Amer. Math. Soc., Providence, 1997.
  • H. Kosaki, Applications of the complex interpolation method to a von Neumann algebra: Noncommutative $L\spp$-spaces, J. Funct. Anal. 56 (1984), 29--78.
  • —, Applications of uniform convexity of noncommutative $L\spp$-spaces, Trans. Amer. Math. Soc. 283 (1984), 265--282.
  • —, An inequality of Araki-Lieb-Thirring (von Neumann algebra case), Proc. Amer. Math. Soc. 114 (1992), 477--481.
  • J. L. Krivine and B. Maurey, Espaces de Banach stables, Israel J. Math. 39 (1981), 273--295.
  • S. Kwapień and A. PełCzyńSki, The main triangle projection in matrix spaces and its applications, Studia Math. 34 (1970), 43--68.
  • F. Lust-Piquard, Inégalités de Khintchine dans $C\sb p\;(1<p<\infty)$, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), 289--292.
  • —, A Grothendieck factorization theorem on $2$-convex Schatten spaces, Israel J. Math. 79 (1992), 331--365.
  • F. Lust-Piquard and Q. Xu, The little Grothendieck theorem and Khintchine inequalities for symmetric spaces of measurable operators, J. Funct. Anal. 244 (2007), 488--503.
  • J. L. Marcolino Nhany, La stabilité des espaces $L\sp p$ non-commutatifs, Math. Scand. 81 (1997), 212--218.
  • V. D. Milman and G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces, Lecture Notes in Math. 1200, Springer, Berlin, 1986.
  • E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103--116.
  • G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Ser. in Math. 60, Amer. Math. Soc., Providence, 1986.
  • —, Factorization of operators through $L\sb p\infty$ or $L\sb p1$ and noncommutative generalizations, Math. Ann. 276 (1986), 105--136.
  • —, ``Probabilistic methods in the geometry of Banach spaces'' in Probability and Analysis (Varenna, Italy, 1985), Lecture Notes in Math. 1206, Springer, Berlin, 1986, 167--241.
  • —, Interpolation between $H^p$ spaces and noncommutative generalizations, I, Pacific J. Math. 155 (1992), 341--368.
  • —, Interpolation between $H^p$ spaces and noncommutative generalizations, II, Rev. Mat. Iberoamericana 9 (1993), 281--291.
  • —, The operator Hilbert space OH and type III von Neumann algebras, Bull. London Math. Soc. 36 (2004), 455--459.
  • G. Pisier and Q. Xu, Non-commutative martingale inequalities, Comm. Math. Phys. 189 (1997), 667--698.
  • —, ``Non-commutative $L\sp p$-spaces'' in Handbook of the Geometry of Banach Spaces, Vol. 2, North-Holland, Amsterdam, 2003, 1459--1517.
  • N. Randrianantoanina, Kadec-Pełczyński decomposition for Haagerup $L\sp p$-spaces, Math. Proc. Cambridge Philos. Soc. 132 (2002), 137--154.
  • Y. Raynaud, On ultrapowers of non commutative $L\sb p$ spaces, J. Operator Theory 48 (2002), 41--68.
  • Y. Raynaud and Q. Xu, On subspaces of non-commutative $L\sb p$-spaces, J. Funct. Anal. 203 (2003), 149--196.
  • H. P. Rosenthal, On subspaces of $L\spp$, Ann. of Math. (2) 97 (1973), 344--373.
  • M. Takesaki, Theory of Operator Algebras, I, Springer, New York, 1979.
  • —, Theory of Operator Algebras, II, Encyclopaedia Math. Sci. 125, Oper. Alg. Non-commut. Geom. 6, Springer, Berlin, 2003.
  • —, Theory of Operator Algebras, III, Encyclopaedia Math. Sci. 127, Oper. Alg. Non-commut. Geom. 8, Springer, Berlin, 2003.
  • M. Terp, Interpolation spaces between a von Neumann algebra and its predual, J. Operator Theory 8 (1982), 327--360.
  • —, $L_p$-spaces associated with von Neumann algebras, unpublished manuscript, Institute for Mathematical Sciences, Univ. Copenhagen, Copenhagen, Denmark, 1981.
  • N. Tomczak-Jaegermann, Uniform convexity of unitary ideals, Israel J. Math. 48 (1984), 249--254.